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ABSTRACT

The torsion of a long elastic bar possessing a normal cross-section bounded by a nephroid is considered by means of an

expansion in polar harmonics, in conjunction with boundary collocation method and the boundary representation of harmonic

functions.

Three types of nephroids are investigated and comparison is carried out between all three cases in what concerns the e¢

ciency of the used method.

The results are illustrated in three-dimensional plots of the unknown functions of practical interest.

Keywords: Theory of elasticity; plane elasticity, torsion of prismatic rods; boundary integral method; numerical solution;

collocation method.

INTRODUCTION

The problem of torsion in the linear Theory
of Elasticity has received considerable attention
long ago as being a problem of practical inter-
est. A large variety of torsion problems has been
tackled using analytical techniques, mainly rely-
ing on results from the Theory of Potential. The
basics of Torsion Theory may be found in all clas-
sical textbooks on the Theory of Elasticity [30,
64, 67, 69]. Due to the increasing mathematical
di¢ culties encountered in the theoretical studies
of torsion problems involving arbitrary bound-
ary shapes, many purely numerical or semi-
analytical techniques have been used to solve
such problems, including irregular boundaries,
boundaries with corners and three-dimensional
cases. [33, 35, 47, 48, 62, 70]. Christiansen [25]
presents a review of integral equations to solve
St. Venant s torsion problem. Jaswon and Pon-
ter [41] develop a boundary integral equation to
solve the torsion problem and present the solu-
tion to many geometries of the boundary, includ-
ing boundaries with corner points like triangles
and rectangles. Lo and Niedenfuhr [57] use an
integral equation to solve the torsion problem,
while Ponter [60] deals with the inhomoge-
neous torsion problem. Bhargava and Puranik
[14, 15] investigate the torsion of prismatic bars
with multiconnected normal cross-section by
boundary integrals. Boundary integral equations
are also used in [75] to solve torsion problems.
Torsion of bars with boundaries having corner

points is also treated by Kolodziej and Fraska
[50] and for special types of boundaries in [13].
Torsion of composite bars by boundary element
method was treated in [46]. Holl and Anderson
[39] studied the limits of deviation of the ap-
proximate solution of a torsion problem from the
exact solution.

The numerical methods are considered to
be powerful and necessary tools for analyzing
a wide range of engineering applications. The
tremendous development of computer technol-
ogy in the past few decades has added to the
importance of the numerical methods by allow-
ing di¢ cult numerical tasks and time-consuming
calculations to be implemented relatively easily.
The level of accuracy was raised consequently.
The use of mesh-based methods, such as nite
dikrences, nite elements or nite volumes meth-
ods have been widely investigated. In all meth-
ods, the natural boundary of the body is usually
replaced by a polygonal shape which involves a
multitude of corner points and necessarily adds
or deletes parts to the real region occupied by
the body. This, in turn, necessitates the applica-
tion of boundary conditions on arti cial boundar-
ies, a fact that introduces additional inaccuracies
into the solution. Minimizing the error requires
large computing times. One way for the e/orts to
overcome these problems was the self-adjusting
mesh generation at each iteration level and tests
for minimal error. This, however, is a di¢ cult
task which requires advanced methods. The
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second way to overcome such problems and re-
move many of the disadvantages of the numeri-
cal techniques was the use of alternative, semi-
analytical treatments. An increasing interest in
developing the so-called meshless methods has
been witnessed in the past few decades. Such ap-
proaches are usually classi ed under the general
title of Boundary Integral Methods. They have
the advantage of reducing the volume of cal-
culations by considering, at one stage, only the
boundary values of the unknown functions and
then using them to nd the complete solution in
the bulk. In addition, these procedures deal ex-
clusively with the real boundary of the medium,
restricted, though, to certain regularity condi-
tions and need not introduce arti cial boundaries.
An extensive account of boundary integral equa-
tion methods in potential theory and in elastos-
tatics may be found in [42]. Boundary methods
were also treated by Herrera and Gourgen [38].
Boundary integral equations to solve Laplace s
equation in two-dimensions were treated in [16,
17]. Treatment of boundary singularities is dealt
with in [65]. Constanda [27, 28] investigates the
use of boundary integral equations in plane elas-
ticity.

Meshless methods for solving boundary val-
ue problems have been extensively popularized
owing to their exibility in engineering applica-
tions, especially for problems with discontinui-
ties and because of high accuracy of the comput-
ed results. They focus only on the points, instead
of the mesh elements as in the conventional nite
element method. A meshfree method does not
require a mesh to discretize the domain of the
problem under consideration, and the approxi-
mate solution is constructed entirely based on
a set of scattered nodes. The meshless methods
often lead to boundary integral equations [10,
18, 53]. This is one of the strong points of these
methods, since the integral equations have been
a focus of interest long ago. Several theorems
on existence, uniqueness and stability of solu-
tions of integral equations were established. In
recent years, there has been a growing interest
in the integro-difrential equations. A review of
boundary integral equations is presented in [59].
Several domain type meshfree methods, among
which the meshless Petrov-Galerkin method [9,

11, 12] have been proposed. Applications to po-
tential problems are investigated in [71]. These
methods achieved remarkable progress in solv-
ing a wide range of static and dynamic problems.
In concept, any consistent set of boundary condi-
tions will yield a solution within the framework
of meshless methods. Practically, boundary con-
ditions may be very cumbersome and yield sin-
gularities in the integral equations which cause
numerical di¢ culties. This is the case in bound-
ary-value problems with mixed boundary con-
ditions. The use of boundary integrals to solve
concrete problems of the Theory of Elasticity
and in other special contexts may be found in [2,
3,32, 34, 63, 66].

TreAz in 1926 [68] introduced a method, later
named the Tretz method, for solving boundary-
value problems. It soon became quite popular.
In this method, the solution to the considered
problem is expressed as a superposition of func-
tions satisfying the governing equation. Various
versions of the Tretz method, e.g., direct and
indirect formulations have been developed. The
unknown coe¢ cients are then determined by
matching the boundary condition. A review of
Tretz method may be found in [49] and contri-
butions on this topic in [31, 55, 72, 73]. The rela-
tion between the method and the boundary inte-
gral equations is revealed in [40]. Investigation
of some problems by Tretz method is carried
out in [1]. A comparison between Tretz meth-
od and other boundary methods may be found
in [56]. Comparison with nite element method
was investigated in [51] for some two-dimen-
sional problems. This method was also applied
in conjunction with other methods in solving
plane problems of static Elasticity, Thermoelas-
ticity and Thermo-magnetoelasticity [4]-[7]. The
analysis of Tre4z method in what concerns the
completeness of the used expansion basis was
undertaken by Jirousek and Wr blewski [43], and
by Herrera [36, 37]. The collocation method col-
location method in conjunction with a boundary
Fourier expansion was treated in [74, 8].

Tretz method and MFS are both mesh reduc-
tion methods. Boundary collocation techniques
are among meshless methods. They are getting
much attention for the solution to various partial
dikrential equations which are useful in many
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practical applications. The history of boundary
elements has been reviewed in a recent paper by
Cheng and Cheng [23]. The use of these meth-
ods involves boundary discretization and hence
provides a reduction in the dimensionality of the
problem.This, in turn, increases the e¢ ciency
of the solution method considerably and also
provides a direct and more accurate estimate of
the gradients at the boundary compared to other
methods. Although boundary methods are most
suitable for linear problems (constant physical
parameters, geometric linearity, etc.), they can
be useful for the study of nonlinear problems as
well [24].

In the potential theory, it is well known that
the method of fundamental solutions (MFS) can
solve potential problems e¢ ciently. Extensive
applications in solving a broad range of prob-
lems have been investigated [29, 44, 45, 58, 61].
The MFS can be viewed as an indirect bound-
ary element method (BEM) with concentrated
sources instead of boundary distributions. The
initial idea is to approximate the solution of La-
place s equation through a linear combination of
fundamental solutions with sources located out-
side the domain of the problem. Moreover, it has
certain advantages over BEM, e.g., no singular-
ity and no boundary integral. However, ill-posed
behavior is inherent in the regular formulation.
Mathematical studies on the MFS have been in-
vestigated by some researchers. Bogomolny [19]
studied the stability and error bound of MFS.
Christiansen and Hansen [26] used the ekctive
condition number to carry out an error analysis
of some collocation methods. They found that
the condition number of the coe¢ cient s matrix
of MFS is much worse than that of the Tretz
method. Li et al. [54] investigate special approx-
imation boundary methods for Laplace s equa-
tion with a view towards boundary singularities.

The boundary element method (BEM) is a
numerical computational method of solving lin-
ear partial dierential equations which have been
formulated as integral equations, i.e. in boundary
integral form. It can be applied in many areas of
engineering and science, including uid mechan-
ics, acoustics, electromagnetics and fracture me-
chanics. Interested reader is referred to the work

of Brebbia [20] and Brebbia and Dominguez
[21].

The present work investigates the torsion of a
long elastic bar possessing a normal crosssection
bounded by a nephroid, by means of moments
applied to the bases, the lateral surface being
stress free. The warping function is expressed as
an expansion in polar harmonics and the coe¢
cients are determined by Boundary Collocation
Method. The resulting system of linear algebraic
equations is tested each time for the determinant
and the 2-norm of the matrix of coe¢ cients to
avoid ill-posedness. The obtained solution is then
used to evaluate the maximum error in satisfying
the main theorem on the boundary representa-
tion of harmonic functions in discretized form
and after regularization. This is taken as a mea-
sure of the e¢ ciency of the proposed scheme.
A table shows the maximum error against the
number of nodes used in the discretized form
of the boundary integral representation. Three
types of nephroids are investigated and com-
parison is carried out between the three cases in
what concerns the e¢ ciency of the used method
and the distribution of stresses in the bulk. The
results are illustrated in three-dimensional plots
of the unknown functions of practical interest. It
is shown that the convergence of the procedure
becomes weaker as the lobes of the nephroid are
more pronounced.

Problem formulation and basic equations

Let the bases of the homogeneous isotropic
prismatic elastic bar be acted upon by forces that
reduce to twisting couples. It will be assumed
that the body forces are absent and that the later-
al surface of the bar is free from external forces.
The normal cross-section of the bar is a two-
dimensional, simply connected region bounded
by a closed contour S . A system of orthogonal
Cartesian coordinates (x;y;z) is used in the plane
of , with origin at O 2, the z-axis being parallel
to the generators the lateral surface.

For the application, the normal cross-section

is in the form of a nephroid with major and
2h2  2h2
minor axes lengths o > "o respectively. The

parameter a is taken as a representative length
for the problem. Its value is taken equal to 1 for
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convenience. The parametric equations of the
boundary in dimensionless form read

cos ) 0 esinf
og—————, =
ey + e2sin? 0 4

0<O<2r, (1)

z(0) =

where 0 is the polar angle in the plane of the
cross-section de ned in the usual way, and
_ h? b

‘1= € = 4. Three cases of interest are

represented on Figs.(1,2,2). The following val-
ues

a’

of the parameters are used: h = 0:45 for Fig.
(1); h = 0:35 for Fig.(2) and h = 0:35 for

Fig.(2).

Let be the unit vector tangent to S at a general
point Q in the sense of increase of and n the unit
outward normal to S at Q. The ordered pair fn;
g forms a right-handed system. It can be shown

Figure 1: Case I: a = 1.0, =1.2

Figure 2: Case II: a = 1.0,b = 2.4

Case IIl: a = 1.0, =3.5

&1 B 3
cos20 + e2sin% 0

U=—-1yz,

Oz = MT(_ )7

a0 30,
’ Vo o
)

the dot over a symbol denotes dikrentiation
w.rt.  and o = (5;)2 + @)2

that™ (%7 %

)
If the natural parametric representation for

the boundary S is used, i.e. if the running param-
eter on the boundary is the arc length, then

$=1:

It is worth noting that S is su¢ ciently smooth,
as this is an important factor for an e¢ cient ap-
plication of the proposed method. Torsion of cyl-
inders with cross-section having angular bound-
ary points will be considered in separately.

Torsion of prismatic rods

The solution of the formulated problem in
terms of displacements is sought by Saint Venant
in the form

V =r1zx,

W= T¢(IE, y)? “4)

where is a constant called the degree of
twist and (x;y) is a function to be determined.
It is known as Saint Venant s torsion function
or warping function. Displacements (4) show
that the cross-sections do not remain plane but
warp. Moreover, all sections warp identically.
The only cross-section that does not warp was
known to be the circular one. Later on, Chen
[22] has shown that elliptical cross sections may
also exhibit zero warping under some condition:
The cylinder needs to be rectilinearly orthotropic
in which the ratio of two associated shear rigidi-
ties equals the square of the aspect ratio of the
ellipse. Physically, this means that the elastic or-
thotropy of the shaft can serve to compensate the
geometric deviation from a circular cross-sec-
tion to an elliptical one. As Chen points out, the
idea can be further generalized to show that the
zero warping property also holds for a number
of composite cylinders consisting of an elliptical
core or cavity coated with many similarly ellipti-
cal layers of dierent materials.

99

9¢
— Oy = p7(=— + x)(5)
The stress tensor components corresponding
to the displacements in (4) are expressed as:
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and
Ogz = Oyy = Oz = Ogy = 0. (6)

Hereis one of two Lam@ coe¢ cients charac-
terizing the elastic material.

In the absence of body forces, the warping
function is harmonic in the variables x ,y in the
region S occupied by the cross-section of the
body: 2

V2 = 0.
(7

Let (x;y) be the harmonic conjugate to the
function (x;y). The Cauchy-Riemann conditions
ae 99 9y 9 o

or Oy’ dy  0x (g)

The boundary condition satis ed by the func-

tion (x;y) is: 1, 5 9

1/1 L==@ +y)+ C
L=y O
where C is an arbitrary constant, while the
components of the stress tensor are obtained
from as:
o 9

Oz = MT(@ — ), 0oy = —p7(5 -~ 2).
. (10)

It is well seen from the above formulas that
the solution of the problem will not change if
a constant is added to the function (x;y). Con-
sequently, the determination of this function is
reduced to solving the Dirichlet problem for La-
place s equation.

The shearing stresses applied to the cross-
section reduce to a couple of moment
M = /(mazy — Y0 ,,)dl. (11)

r

Inserting into this formula the values of | Y
calculated from formulas (5) , one nally obtains

M=DrT.
In this formula
o 9o
D= 24y o= —y——)dl
M/(I +y +xay y(%)

r

is the torsional rigidity. If M, is the twisting

F(z,y)

Fe(a,y) :"i]{[FC(s’)i mR— F(s)

Boundary integral representation of harmon-
ic functions

Let F be a harmonic in . One uses the well-
known integral representation from Potential
Theory for F at an arbitrary eld point (x;y) in in
terms of the boundary values of the function F
and it s complex conjugate F¢in the form

1 ! a c ’ 0 !/
= %%[F (s )wlnR—ﬁ— Fe(s )85' In R]ds ,
5 12)
where R is the distance between the point
(x;v) in and the current integration point (x( °);y(
°))on S.

The representation of the conjugatate func-
tion is given by

0

9% In R]ds .

(13)

the integral representations (12, 13 ) for the
harmonic function F; F¢replace the usual Cau-
chy-Riemann conditions.

o on’

When the point (x;y) tends to a boundary
point (2(s),y(s)) relation (12) yields:

F(s) = %%[F(s/)% In R+ F“(s')aas,
’ (14)
. 9% InR 0 .

Replacing an/ by as/ in (12,13) and
their boundary version (14), where is the har-
monic conjugate of InR, it is readily seen that
these integral relations are invariant under the
transformation of parameter from the arc length
s to any other suitable parameter. This property
makes the method more exible. In view of the in-
tegral representations (12, 13), it is su¢ cient for
the complete solution of the mechanical problem
in the region to determine the boundary values
of the harmonic function F, as well as those of
the harmonic conjugate. This requires two inde-
pendent relations in these unknowns, obtained
from (14) written for.F and it s conjugate. For
the application, it is more convenient to use the
following form of the integral representation for

any harmonic function F:
0

In R]ds

0

moment or torque at a base, then the equilibrium F(s) = % % [F( S’)% In R+ (F°(s') — F(s))~% In Rld

condition yields M,= M =]VL[) ;from which
t

T=—.

D

0s'
9 2 (15)
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Numerical scheme for the solution

In this section the dierential and integral
operators appearing in the equations are to be
discretized as usual and the problem of determi-
nation of the boundary values of the unknown
functions reduces to nding the solution of a lin-
ear system of algebraic equations. The full so-
lution is then obtained by numerical quadrature
according to (13,14 ,15).

The discretization procedure

The contour of integration S will be divided

equal. For convenience only, the value of p will
be chosen so that (p 1) is divisible by 4. Let Q,
= (x,y,) be the midpoint of the segment G, (i =
1,2;:::;p) with corresponding value S, of the pa-
rameterS (the points @ may in fact be arbitrarily
chosen in the intervals G,). The lengths of these
segments are chosen small enough so that the
value of any continuous function f{s) de ned on
S may be approximated on the segment G, by it
s value at the point @, ,denoted f,:The point Q,
appearing in the above formulation is identi ed
with any one of the points Q ,say Q,: Any con-
tour integration on S will be replaced, as an ap-
proximation, by the Riemann sum

p
[(s)ds =Y fi AS;
]488 ; (16)

The total number of unknowns on the bound-
ary is 2p representing the values of the harmonic
functions ; ¢, where “is the complex conjugate of,
at the points Q, (i = 1,2;3;:::;p). These unknowns
will be considered as the components of a 2p -di-
mensional vectorXwith components(X ;X ;::;X. 2p)
de ned according to the rule:

Xi=t e Xp =0, s Xpy1 =05, .

This  procedure the
(X, X,:X,)) yields an overdetermined system
of linear algebraic equations which can be writ-
ten in the matricial form

AX=B; (17)

the general elements (A ) and(B ) of matrix

A and vector B are determined in the following
subsection.

Discretization of the Cauchy-Riemann condi-
tions

7X2p = w;

for unknowns

Vi

Wij - (‘7

Zij =

S.M. Sheshtawy and A. F. Ghaleb

This concerns the discretization of equation
(15) and provides 2p rows in the coe¢ cient s
matrix. The discretization of this equation leads
to the following p algebraic equations.

1 p

d
T ZW}] on;

J=1

— In Rl‘j]ASj s

d
In Ry; + (45 — M)g
J

(18)
e 9
whered7; and?s; denote respectively the di-
rected derivatives along the normal and the

tangent to the contour S at the point Q,and R,
is the distance between the two points Q and Qj.
Clearly, when i = j there will be a singularity in
the corresponding summation term and this re-
quires a special treatment to remove it. For con-
venience, one sets

0 lnRZ—j)Asj, o

Zij = (5

85]» In Rij)AS]‘

87’Lj

i?j = ]‘72’ "'7p bl

(19)
The following formulas may be easily veri ed [7]

(20)
iF 7

21)

— ) = ;(y; — w)

2
. R

AS]' ,
—1 T3, — Gty

Wi = —— :
2 () + (y:)?

Formulas (19, 20, 21), to our belief, are more
accurate than those usually used in the boundary
integral equation methods existing in the litera-
ture. These methods replace the actual bound-
ary by a polygon over which the line integrals
are performed , while the present formulation
takes into account the shape of the actual bound-
ary through the rst and the second derivatives
of the functions x(s);y(s). The quantities xy, as
well as their derivatives w.r.to the parameter s
are known once the contour has been precised.
Formula (21) requires the existence and conti-
nuity of the second derivatives of the functions,
i.e. the closed boundary S must belong to class
C? at least. In fact, this is the condition imposed
by Constanda when investigating the uniqueness
and existence of the solution by the Boundary
Integral Method .

fﬂ%—$0+%@rﬂwA
R2.
i

Sj,

b

i
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For the part involving ZU. one has [7]

Calculation of the harmonic functions at in-
ternal points

Having determined the boundary values of
the harmonic functions on the boundary by using
formulae for the dlmeflswnless function :

Y= — = 50 5 (@7 )+, (22)

= ¥ = a0r 3 (cmcon )+ sino)
n=1

exp (1)
T exp (nc)

where ¢, is an arbitrary constant.(c, = 0 in all
cases). The values of these functions can be de-
termined at any point (x;y) in the cross-section
domain by using the expansions of the basic
harmonic functions in terms of a complete set of
harmonics as follows:

+ [cn cos (nx) + d,, sin(na)] exp (—ny)) .

For best results, one takes 7' = 0.1 in case (I), 7" = 0 .01 in case (II) and 7" = 0.001 in case

(III), and

N — p
4
The Cauchy-Riemann conditions yield:
—c 1/7
P = = k’—!—z —an, sin (nx) + b, cos(nx)]

n=1

One takes k= 0:01 in case (I) and k = 0:005
in case (II) and k = 0:5 in case (III). The addi-
tional constant has no physical implications, its
value amounts to xing the value of the harmonic
conjugate function at an arbitrarily chosen point
of the domain. Numerical experiments, howev-
er, have indicated that the value of this constant
may strongly akct the calculations. For best re-
sults, one chooses k as follows: k = 0:1 in case
(D), k=0:3 in case (II) and k = 0:6 in case (I1I).

The Boundary Collocation Method is then
applied to determine the coe¢ cients in these
expansions in terms of the previously obtained
boundary values of these functions. The result-
ing system of linear algebraic equations was
solved by Least Squares method. Each time, the
determinant and the 2-norm of the coe¢ cient s
matrix was calculated to avoid ill-posedness of
the system, the results are shown on the Table
below. Also, the solution was substituted again
into the equations in order to con rm its exacti-
tude.

N

exp[ny]
T exp[n c]

+ [cp sin (n x) — d,, cos(nx)] exp (—ny)> .

In the end, the obtained expansions were sub-
stituted again into the boundary integral repre-
sentation of harmonic functions in discretized
form and after regularization. The maximum er-
ror in satisfying these conditions is noted in the
Table below. It will serve as a measure of the e¢
ciency of the used procedure. The stress compo-
nents may now be calculated from (10):

Numerical results and discussion

The value of p was taken such that (p 1) be
divisible by 4 for convenience. In fact, only 5
nodes were required to obtain the coe¢ cients of
the expansion. Further increase of the number of
nodes up to 201 nodes was used to verify the
boundary integral representation of harmonic
functions. The following Table shows the de-
terminant and the 2-norm of the matrix of coe¢
cients in determining the coe¢ cients of the ex-
pansion and the value of the twisting moment for
the three cases under consideration by 5nodes.

Oy = azy = a, sin nx — 0, cos(nx M

Ozy = - ; n b ( )] Texp (nc) (23)
[—cn sin (nz) + d,, cos(nx)][n exp (—ny)] ) + =, (24)

o Ozr _ 3 a cos (nx n Sin(ne M

=1

3

[cn cos (nx) + d, sin(nz)][—n exp (—ny)]) — y. (26)
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case (I) case (II) case (III)

det -0.0376 -0.0086 -0.0917
2-norm 19.30 212.7 2159.5
M 1.57 3.86 0.8161

Ultimately, the basic harmonic function and
its conjugate could be plotted in 3-dimensions
in the cross-section domain (Figs.(6)-Fig.(6)),
as well as the stress components acting on the
cross-section (Figs.(6)-Fig.(6)). The results are
shown below, where the domain of the solution
(the normal cross-section of the cylinder) has
also been represented together with the plotted
functions for convenience.

The following Table shows the error in sat-
isfying the boundary integral representation of
harmonic functions against the number of nodes.

case (I) case (IT) case (IIT)

5 0:00998 0:00893 0:00954
73 | 0:00640 0:00201 0:56921
121 | 0:00039 0:00095 0:00694
161 | 0:00029 0:00074 0:00130
201 | 0:00023 0-00059 0-00099

It is readily seen that the warping function, as
well as the stresses, for the ellipse-like contour
are qualitatively dierent from those of the con-
tour with two lobes. This is compatible with the
fact that the ellipse-like contours are the only
convex nephroids. The symmetry properties of
the stress components are obvious. It is also no-
ticed that the 2-norm of the matrix grows larger
as the lobes of the boundary become more pro-
nounced, so one expects the e¢ ciency of the
method to deteriorate in that case. This is accom-
panied by a growth of the stresses and a slower
convergence of the maximum error to zero.
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