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Abstract
Selecting the most relevant features and samples out of a large set of candidates is a task that occurs
very often in the context of automated data analysis, where it improves the computational
performance and often the transferability of a model. Here we focus on two popular subselection
schemes applied to this end: CUR decomposition, derived from a low-rank approximation of the
feature matrix, and farthest point sampling (FPS), which relies on the iterative identification of the
most diverse samples and discriminating features. We modify these unsupervised approaches,
incorporating a supervised component following the same spirit as the principal covariates (PCov)
regression method. We show how this results in selections that perform better in supervised tasks,
demonstrating with models of increasing complexity, from ridge regression to kernel ridge
regression and finally feed-forward neural networks. We also present adjustments to minimise the
impact of any subselection when performing unsupervised tasks. We demonstrate the significant
improvements associated with PCov-CUR and PCov-FPS selections for applications to chemistry
and materials science, typically reducing by a factor of two the number of features and samples
required to achieve a given level of regression accuracy.

1. Introduction

In recent years, machine learning (ML) models have found application across a vast breadth of scientific
fields, from economics [1–4] to medical diagnostics [5–8] to sensing [9–11] and computational chemistry
[12–14]. Data-driven modelling is often discussed in a ‘big data’ context, where the computational cost of a
ML model is of secondary importance and data is inexpensive. Nevertheless, many applications benefit
significantly from reducing data requirements or accelerating training and prediction. The search for a
balance between the complexity of the model, the amount of training data, and the accuracy of predictions
has given rise to a subclass of ML schemes focused on subselection, wherein a subset of samples or
descriptors is identified that minimises the corresponding degradation of accuracy [15, 16].

The objective of sample selection is to identify the most significant data points, effectively pruning the
redundant samples and identifying ideal candidates for costlier reference calculations or analysis steps [17].
Methods may seek to find a core-set that is representative of the entire sample space, e.g. through Voronoi
tessellations [18], committee models [19, 20] or random forests [21], or to temper the error in representing
outlier or border samples, such as with sensitivity heuristics [22–24] or nearest neighbour analysis [25].
Conversely, in feature selection, one determines an information-rich subset of a large list of possible
descriptors. This motivation is akin to traditional dimensionality reduction techniques like principal
components analysis (PCA), which construct new features as combinations of the original inputs. Feature
selection, on the other hand, preserves the original feature space, which can be valuable whenever descriptors

© 2021 The Author(s). Published by IOP Publishing Ltd

https://doi.org/10.1088/2632-2153/abfe7c
https://crossmark.crossref.org/dialog/?doi=10.1088/2632-2153/abfe7c&domain=pdf&date_stamp=2021-7-14
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0003-4515-3441
https://orcid.org/0000-0002-2260-7183
https://orcid.org/0000-0003-2944-9445
https://orcid.org/0000-0001-8326-325X
https://orcid.org/0000-0003-2571-2832
mailto:rose.cersonsky@epfl.ch
mailto:michele.ceriotti@epfl.ch
https://doi.org/10.1088/2632-2153/abfe7c


Mach. Learn.: Sci. Technol. 2 (2021) 035038 R K Cersonsky et al

hold conceptual value, e.g. sensors for autonomous robots [26], medical markers for diagnostic classification
[5, 27–29], or where evaluating a large number of features for new samples is costly.

Most subselection methods are unsupervised and seek to exploit the diversity of the selections to
maximise the corresponding variance. For example, in farthest point sampling (FPS) one relies on the
diversity of the selected vectors as measured by the mutual Euclidean distance. Selection methods based on
the CUR decomposition, instead, choose the columns and/or rows of the feature matrix that provide the best
low-rank approximation of the original matrix. In unsupervised selection models, the preservation of
pertinent information for supervised tasks is not guaranteed, particularly in the case of poor representations
or non-linear relationships between features and targets. Thus, in supervised tasks, it may be attractive to use
supervised selections that employ knowledge of the regression targets to influence the choice of the samples
or features.

Inspired by the principal covariates regression (PCovR) method [30], we propose a modification to the
FPS and CUR approaches that combines the unsupervised component with an explicit estimation of the
performance of the subselection in the context of property regression. We demonstrate the superior ability of
these algorithms to select features or samples for supervised learning and discuss minor modifications that
improve the performance of these subsets within unsupervised tasks. To demonstrate, we employ datasets
from the atomic-scale study of molecules and materials containing features that encode structural and
compositional information and are used to predict properties such as the magnetic chemical shieldings of
nuclei [31, 32], energy, or the forces acting on atoms [33–35].

2. Methods

We assume that the reader is familiar with simple linear and kernel ML methods; those unfamiliar with these
methods or wishing further explanation may refer to Helfrecht et al [36], which contains a pedagogic
discussion of these methods using a similar notation.

2.1. Notation
2.1.1. X and Y
For each system, we describe inputs by a nsamples× nfeatures matrix X, where each row vector x contains as its
entries the features of the corresponding sample. We also assume that the nsamples× nproperties matrix Y
consists of rows (denoted y) containing the properties corresponding to the samples in X. Furthermore, we
assume that X and Y are standardised, i.e. centred by their column means and scaled such that X has unit
variance and each column of Y has variance equal to (1/nproperties). The standardisation step is not essential
but ensures that the features and properties have variance on the order of 1.

2.1.2. Projectors and latent space
We use T to indicate a projection of data into a lower-dimensional latent space. PAB denotes a projector from
one space A to another space B.

2.1.3. Matrix slices
For a general matrix A, we denote a general subset of the elements of A as A∗. The feature-selected subset of
A is given as Ac, consisting of theM features found in columns c= (c1, c2, . . . cM). The sample-selected subset
of A is given as Ar, consisting of theM samples found in rows r= (r1, r2, . . . rM). We indicate the ith row as ai
and the jth column as Aj, while the jth element in the ith row is given by Aij.

2.1.4. Accents and operations
We use Â to indicate an approximation of A and Ã for an augmentation (a matrix that is analogous to A but
is modified to incorporate other information). We use UA andΛA to represent the eigenvectors and
eigenvalues of a matrix A= UAΛAUT

A, where UA contains the eigenvectors as columns. We denote the

pseudoinverse of a regularised, non-invertible matrix as A−, which is equal to
(
ATA+λI

)−1
AT, where λ is

an appropriate conditioning or regularising parameter.

2.1.5. Loss measures

We will report different loss measures, either the relative loss ℓA = ∥A−Â∥2

∥A∥2 , or where we wish to give the
regression loss in concrete units, the root-mean-squared error (RMSE).
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Figure 1. Example projections and regressions using the PCovR model. PCovR provides a projection into latent space which
optimises a combined regression and projection loss, as weighted by the parameter α, where α= 0 corresponds to pure linear
regression and α= 1 corresponds to PCA. Projections (top row) are given across the first two principal components and coloured
by the corresponding property. Y vs Ŷ regression plots (bottom row) are coloured by regression error, with darker corresponding
to a higher error. Intermediate values of α provide a projection which performs better in both tasks than either linear regression
or PCA.

2.2. Principal covariates regression
PCovR [30] is an algorithm used to generate a latent space projection T that minimises a combined PCA and
linear regression (LR)-like loss

ℓ= α
∥X−TPTX∥2

∥X∥2
+(1−α)

∥Y−TPTY∥2

∥Y∥2
, (1)

where α is a mixing parameter that determines the relative weight of the two components. Setting α= 0.0
corresponds to LR, and α= 1.0 corresponds to PCA.

In sample-space PCovR, the latent projection is determined by the modified Gram matrix of size
nsamples× nsamples:

K̃= αXXT +(1−α)ŶŶT, (2)

where Ŷ is the result of an appropriate regression approximation of Y to avoid over-fitting.
However, computing the eigendecomposition K̃ is intractable for large numbers of samples; therefore,

when nfeatures < nsamples, it is advantageous to perform feature-space PCovR, where an equivalent latent
projection is determined by the eigendecomposition of a modified covariance matrix of size
nfeatures× nfeatures:

C̃= C−1/2XTK̃XC−1/2. (3)

Examples of the projections and regressions obtained using PCovR, performed on the NMR Chemical
Shieldings of the CSD-1000R dataset [32], are shown in figure 1. In the α= 0.0 case, the projection is
equivalent to the regression weight(s), and the second principal component is zero, as this dataset has
nproperties = 1. In the α= 1.0 case, the projection distinguishes the clusters (that are associated with the
chemical identity of the atoms, namely H, C, N, O) but fails to regress the properties. For most PCovR
models, an intermediate value of α≈ 0.5 optimises the combined loss [36–38]. In the many cases in which a
kernel ridge regression (KRR) model out-performs LR, one can improve the model by using its kernelised
counterpart, KPCovR [36], where K̃= αK+(1−α)ŶŶT, with K being the kernel matrix and Ŷ the
predicted properties obtained through KRR.

2.3. Selectionmethods
Selecting samples or features amounts to picking rows and columns of X that provide model performances
comparable to that of the full feature matrix. Of the many proposed selection strategies, we will expand upon
two methods: FPS and CUR decomposition.

3
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Figure 2. FPS selection. Each point corresponds to a row (for sample selection) or column (for feature selection) of the matrix.
Procedure: (1) Select an initial item. (2) Select the item that is farthest from (1). (3) Select the item which is farthest from those
already selected. (4) Repeat until the target number of items is selected.

2.3.1. Farthest point sampling
FPS employs a distance metric to maximise the diversity of the selection [39]. FPS is a greedy selection
scheme (meaning that points are selected incrementally) and is deterministic apart from choosing the first
point that is typically picked at random. Each subsequent choice is made to maximise the Haussdorf
distance, i.e. the minimum distance to all previous selections

∗m+1 = argmaxj

{
min
i∈∗m

[d(i, j)]

}
(4)

where ∗m contains the previous selections, ∗m+1 is the next selected sample or feature, and d(i, j) indicates
the distance between the ith and jth column or row. A schematic of this process is depicted in figure 2.

Even though d(i, j) may be defined by any metric, one often uses a Euclidean distance [40]. For sample
selection, traditional FPS employs a row-wise Euclidean distance, which we give here in terms of the Gram
matrix K= XXT

dr(i, j) = Kii− 2 Kij +Kjj. (5)

Equation (5) simplifies the incorporation of a kernel formulation of distances rather than through an explicit
set of features—by setting Kij = k(xi,xj), one can perform sample-space FPS using the same procedure
discussed here, in a way that is consistent with the kernel-induced metric.

The formulation of a PCovR-inspired version of FPS for sample selection is rather straightforward, as it
simply involves replacing the Euclidean distance d in FPS with an augmented distance

d̃r(i, j) = α∥xi− xj∥2 +(1−α)∥ŷi− ŷj∥2.

With this definition, the method linearly interpolates between Euclidean FPS at α= 1.0 and one which
maximises the diversity of Y at α= 0.0.

By writing out explicitly the distances in terms of scalar products, one can see that this definition is
equivalent to equation (5) replacing K with K̃ from equation (2)

d̃r(i, j) = K̃ii− 2 K̃ij + K̃jj. (6)

The extension to KPCov-FPS, which is warranted when the kernel is highly non-linear, is trivial and
accomplished using the PCov extension of a kernel matrix K, as discussed in Helfrecht et al [36].

For feature selection, the corresponding column-wise Euclidean distance can be expressed in terms of the
covariance matrix C= XTX

dc(i, j) = Cii− 2 Cij +Cjj, (7)

and a feature-space version of PCov-FPS can be obtained by using a feature distance analogous to
equation (7), computed in terms of C̃, resulting in the metric d̃c(i, j) = C̃ii− 2 C̃ij + C̃jj.

2.3.2. Increasing efficiency with Voronoi FPS
Selectingm rows/columns from an nsamples× nfeatures feature matrix using FPS requiresO(m× nsamples)
distance evaluations. We can reduce the number of distance calculations by exploiting the fact that (1) the
FPS scheme implicitly partitions the rows/columns into Voronoi cells centred on the current selections and
(2) the triangle inequality quickly identifies the subset of distances that needs to be re-calculated with each
new selection.

4
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Figure 3. Schematic of Voronoi FPS. Each selected point defines an implicit Voronoi cell; this partitioning can be used to
determine the points that need to be updated after each additional selection based on equation (9).

With the first selection ∗1, we compute the distance to all remaining items, such that the Haussdorf
distance of the jth item is assigned h(j)= d(∗1, j). Also, we assign v(j)= ∗1 to signify that each remaining item
resides in the Voronoi cell of this first selection. With each subsequent selection ∗m+1 = argmaxj h( j), we
need only to compute the distances and update the entries of h and v for items which lie closer to the most
recent selection than their previous Voronoi centre, i.e. where d(∗m+1, j)< h( j). At this point, we note that

d(∗m+1, j)≥ |d(∗m+1,v( j))− d(v( j), j)| . (8)

It follows that the points of interest are those for which

h( j)>
1

2
d(∗m+1,v( j)), (9)

noting that h(j)= d(v(j), j). This application of the triangular inequality is visualised in figure 3, where we
show it is unnecessary to compute d(∗m+1 j) because d(v( j), j)<

1
2d(∗m+1,v( j)).

The efficiency of this approach depends on several considerations. For the first few selections, the
triangle-inequality bound will not reduce the number of distance calculations substantially, and as more
selections are made, the number of distance calculations needed will likewise increase. Hence, a sweet spot
for applying this technique involves scenarios where the total number of items is vast, and one wants to select
a small fraction. Furthermore, with a Euclidean metric, it is often possible to perform fast dense operations
on X, and the random access needed to make use of the Voronoi scheme might be detrimental unless it
avoids a substantial number of distance evaluations. On can automatically determine the switching point to
fall back on full distance evaluation. In SI section S1.1 (available online at stacks.iop.org/MLST/2/035038/
mmedia), we report the benchmarks in terms of the number of assessments of d∗—which reflects the scaling
when employing a computationally-intensive distance metric that cannot be computed efficiently in terms of
dense matrix operations.

2.3.3. CUR decomposition
CUR decomposition [41] aims to approximate a matrix X using a subset of columns and rows, such that

X̂≈ Xc
(
X−
c XX

−
r

)
Xr. (10)

Typically in CUR, Xc, (X−
c XX

−
r ), and Xr are denoted C, U, and R, however we have changed notation to

avoid confusion with the covariance matrix C and eigenvectors U. For a given choice of rows and columns,
equation (10) gives the best approximation of the original feature matrix in terms of Xc and Xr. Various

5

https://stacks.iop.org/MLST/2/035038/mmedia
https://stacks.iop.org/MLST/2/035038/mmedia


Mach. Learn.: Sci. Technol. 2 (2021) 035038 R K Cersonsky et al

Figure 4. CUR selection. The figure demonstrates CUR feature selection. Sample selection proceeds identically with the matrix
rows used in place of the columns. (1) Compute the importance score π for each column; select the feature that maximises π.
(2) Orthogonalise the matrix with respect to selected feature; recompute π; select the feature which maximises π. (3) Repeat step
(2) until the target number of items is obtained.

implementations of CUR mainly differ by the strategy for selecting c and r. Many flavours of CUR, including
that of Mahoney and Drineas [41], incorporate an element of randomness in the selection—mostly to
improve performance in the limit of large data sets. The subsets of rows and columns are usually determined
incrementally, computing at each stage a leverage score π, representative of the relative importance of each
column or row,

∗m+1 = argmaxj
{
πj

}
. (11)

After having selected the entry j for which πj is highest, we orthogonalise the remaining columns or rows
with respect to this selection, a wrapping procedure first introduced in Imbalzano et al [40]. This
deterministic approach generally out-performs the more traditional approach, wherein one selects all
features in a single iteration, as further demonstrated in figure S3. A schematic of feature selection using
CUR is shown in figure 4.

In the most common form of CUR, the leverage score is computed from the singular value
decomposition [42, 43] of the feature matrix, X= UKΛ

1/2UT
C, where the eigenvector subscripts denote the

Gram and covariance matrices K and C. For selecting samples, π is the sum over the squares of the first k
components of the left singular vectors

πi =
k∑
j

(UK)
2
ij , (12)

and for feature selection the right singular vectors,

πi =
k∑
j

(UC)
2
ij . (13)

To incorporate PCovR into CUR-based selection, we propose computing the leverage scores using UK̃ and
UC̃ in place of the left and right singular vectors. This is motivated by the fact that C̃ and K̃ share the same
relationship as C and K, and that one could define PCovR-style features X̃ whose singular value
decomposition (SVD) yields UK̃ and UC̃ as left and right singular vectors (this is briefly discussed in
appendix A, with the full derivation in S1.2). The number k of singular vectors included in computing the
leverage score should usually be small; we obtain the best results using k≤ nproperties eigenvectors, as
demonstrated in figure S4.

After each iteration we orthogonalise the remaining samples with respect to the most recently selected
row xr

X← X−X
(
xTr xr
∥xr∥2

)
, (14)

or in feature selection relative to the most recently selected column Xc

X← X−
(
XcXT

c

∥Xc∥2

)
X. (15)

For PCovR-inspired CUR selection, the only additional change involves eliminating at each step the
components of the property matrix that the selected features or samples can describe. For sample selection,
we subtract from the property matrix the result of a regression trained on the selected samples

6
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Ŷ← Ŷ−XX−
r Ŷr. (16)

And for feature selection, one should perform the update

Ŷ← Ŷ−XcX−
c Ŷ, (17)

so that the next iteration of the CUR selection identifies the features that are best suited to describe the
residual error in the predicted properties.

2.3.4. Improving the efficiency of CUR
The deterministic CUR scheme is particularly demanding, since it involves in each iteration reconstructing K̃
(equation (2)) or C̃ (equation (3)) to only use the first k eigenvectors to compute the importance score π. In
unsupervised CUR one can use an iterative algorithm to determine the top eigenvectors, that—for large
numbers of features—can be much faster than full eigendecomposition. Furthermore, the orthogonalisation
steps outlined in equations (14) and (15) constitute rank-one downdates to K and C and their updated
eigendecompositions can be computed using the method outlined in Bunch, Nielsen, and Sorensen [44] or
Gu and Eisenstat [45]. Similar low-rank updates could be used to compute the eigenvectors of K̃ given those
of K and update the inverse square root C−1/2 that enters the calculation of C̃. A further discussion of these
considerations, and preliminary benchmarks of their implementation, are provided in SI section S1.3.

3. Results

In this paper we assess the performance of PCov-inspired FPS and CUR covering several scenarios that are
common in supervised learning. In particular, we benchmark sample selection as a strategy to reduce the
training set size (3.1.2), and active set selection for sparse KRR methods (3.1.3). We benchmark feature
selection in the context of linear (3.2.2), kernel (3.2.3), and complex non-LR problems (3.3). Even though we
focus on the impact of sample and feature selection on the regression performance, we also discuss the
implications for unsupervised tasks in sections 3.1.1 and 3.2.1. For every model and task, we compare an
entirely random selection with PCov-CUR and PCov-FPS across different values of α, again noting that
α= 1 corresponds to standard FPS and CUR. Due to the random initialisation of (PCov-)FPS, we perform
multiple PCov-FPS selections and report average errors for each α. Unless otherwise stated, for all supervised
models, the hyperparameters are optimised by two-fold cross-validation.

While our approach is completely general, we focus here on a benchmark system that is relevant for
applications of ML to atomistic simulations, chemistry, and materials science—a field in which feature and
sample selection, particularly using FPS and CUR, has lately become an increasingly common practice. In
sections 3.1 and 3.2, we focus on the CSD-1000r [46] dataset that contains C, H, N, O atomic environments
taken from 1000 crystal structures of molecular compounds, and their NMR chemical shieldings as target
properties. We describe the atom-centred environments in terms of the smooth overlap of atomic positions
(SOAP) power spectrum [47] computed with librascal [48], which have been previously employed for similar
ML tasks [32, 36, 49]. This is a particularly relevant application because the number of SOAP features can be
increased systematically, and the high number of resulting features is the main reason for the comparably
high computational cost of the resulting regression models [40, 50, 51]. Models were trained on identical full
training sets of 11 854 environments, and we report errors for a separate test set of 1317 environments.

In section 3.3, we also provide a distinct example of the use of PCov-CUR feature selection for force field
construction, training a feed-forward neural network (NN) based on Behler–Parrinello atom-centred
symmetry functions (SFs) [33, 52]. We predict energy and forces for a data set containing 10 000 benzene
configurations, including four different benzene polymorphs, and using 90% of the structures for training
and 5% each for validation and testing, respectively.

3.1. Sample selection
3.1.1. Preserving the covariance for unsupervised tasks
We begin by considering how selecting a subset of the structures, with and without incorporating a PCov
component, impacts performance in unsupervised tasks, and how to reduce such impact. The reduced
training set size potentially leads to a reduced rank of the covariance matrix computed from Xr, Cr = XT

rXr
but also to a skewed weighting of the importance of different features in the covariance built on the training
set. The latter can be mitigated by introducing a correction based on the matrix decomposition in
equation (10) to obtain a modified subset X̃r to better preserves the sample covariance, where

C̃r = X̃
T
r X̃r = X

T
r (X

−
r )

TXTXX−
r Xr, (18)

7
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Figure 5. Approximation of covariance matrix C= XTX using Xr and X̃r for PCov-CUR and PCov-FPS on CSD-1000R. Shaded
regions bound the minimum and maximum error across all α for each PCovR-inspired method. The dotted line corresponds to
the PCA-type approximation of C from the ntrain eigenpairs corresponding to the largest eigenvalues.

which can then be diagonalised to compute a modified PCA projection matrix. If necessary, one could also
evaluate the corrected feature matrix explicitly,

X̃r =
[
(X−
r )

TXTXX−
r

]1/2
Xr, (19)

which can be useful if one wants to perform feature selection based on a reduced train set.
Figure 5 shows the error in reproducing the covariance matrix with reduced sample sets. For each

method, the shading indicates the range spanned as α goes from 1 (indicated with full lines, equivalent to the
standard unsupervised selection) to 0 (indicated with dashed lines, giving full weight to the supervised
component). We can compare these results to the approximation of C by its eigendecomposition
Ĉ= ÛCΛ̂CÛT, computed with the top nsamples eigenvalues and their corresponding eigenvectors. Computing
the covariance using the sample set Xr results in large error (ℓC ≈ 0.3 with 1000 samples), with convergence
only as nsamples approaches nfeatures (2520 in this case). Computing the covariance with X̃r reduces the loss
considerably, with a covariance loss of ℓC = 0.01 possible with as few as 60 of the 11 854 of the training
points. PCov-CUR typically out-performs PCov-FPS, and for both, the approximation degrades as α→ 0.

3.1.2. Training set selection
When choosing the most important training points out of a large pool of candidates, a fully-unsupervised
scheme offers the clear advantage that one does not need to compute or measure the properties in advance,
which is usually the time-consuming step. However, one can often obtain inexpensively an approximate
estimate of Y, which can be used with PCov-based selection methods to reduce the number of accurate
reference evaluations. Similarly, one may want to select samples from an existing training set to use them for
more demanding data analytics, e.g. picking the most relevant snapshots from a molecular dynamics
trajectory to use for feature selection or non-linear dimensionality reduction.

In figure 6, we show the property regression error on a fixed randomly-selected test set of environments
for models trained on different subselections of the complete train set. For each subselection, we train a
linear ridge regression model

Ŷ= XX−
r Yr. (20)

The curves in the figure compare the convergence with train set size for a random selection (the usual
construction of a learning curve) with that obtained by different PCov-inspired methods.

Interestingly, when employing PCov-FPS, the unsupervised selection (α= 1) performs best, usually
being the only values that (marginally) improves upon a random selection, with errors increasing with
decreasing α. For PCov-CUR, the supervised and unsupervised methods perform comparably in terms of
mean error, with a slight decrease in error possible as α→ 0. In order to fully rationalise the performance of
the different methods, it is necessary to consider the error distribution rather than just the mean error. As
shown in figure 7 the supervised limit of PCov-CUR reduces significantly the tails of the error distribution,
indicating they provide more robust models that are less susceptible to the presence of outliers in the test set.
The PCov-FPS(α= 0) selection results in a flatter distribution of errors, which has the smallest maximum
error, but a more significant mean error, as seen clearly in figure 6. In this example, one must consider that
the (full) training and test set are obtained by randomly selecting environments from the same dataset. Thus,
since a random subselection of the train set has the same makeup as the test target, methods such as FPS and
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Figure 6.Mean relative error using CSD-1000R training subsets. Metrics shown are PCov-CUR (red), PCov-FPS with random r1
(blue), and random feature selection (black, solid). Shaded regions bound the minimum and maximum error across all α for
each PCovR-inspired method. In the left panel the grey dashed line denotes the error using the full training set. The right side
panels show performance across α at nsamples = 100,500,1000 samples.

Figure 7. Kernel density estimate (KDE) of errors for random (black), PCov-CUR (α= 0, red) and PCov-FPS (α= 0, blue)
selected training subsets, for ntrain = 100 (of 11 854). The dotted lines represent the maximum absolute error for each respective
training subset. Results for further α and ntrain are in figure S7.

CUR are not guaranteed to match or improve upon the mean error compared to random selection, consistent
with the observations in [53] for a KRR model of the atomisation energy of small organic molecules.

3.1.3. Active set selection for sparse kernels
Another context in which one wants to perform sample selection is when building a sparse kernel model,
using the projected-process approximation [54]. In sparse KRR, one defines an ansatz for the properties of a
sample as

y(x)≈
∑
i∈M

wik(x,xi), (21)

whereM indicates a set of ‘reference samples’ that effectively constitute a basis to expand y(x). The weights
wi are optimised to minimise the regression error on the train set. In the projected-process approximation,
the reference samples Xr (also known as ‘active points’) correspond to a sample-selected subset of the
training set. If we denote K as the kernel matrix between a dataset, described by the feature matrix X, and
itself; Kr as the kernel between X and Xr; Krr as the kernel computed between Xr and itself, the values of the
predicted properties for the train set are given by

Ŷ= Kr(K
T
rΛ

−1Kr+Krr)
−1KT

rΛ
−1Y, (22)

whereΛ is a regularisation matrix, typically taken to be a scalar, in which case (22) reduces to that reported
in [36]. In this example, we use the radial basis function (RBF) kernel k(x,x ′) = exp

(
−γ∥x− x ′∥2

)
, and we

choose γ= 10−4, which optimises the combined regression and reconstruction loss for the full feature
vectors (see S8b).

Figure 8 compares the performance of a sparse KRR as a function of the number of reference points
selected by different techniques. All data-driven selection methods out-perform by up to a factor of two the
random baseline, particularly in the small active-set limit. CUR marginally out-performs FPS at all but the
smallest active set sizes and PCov-inspired methods generally perform better than their unsupervised
counterparts, with an error decreasing further as α→ 0.
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Figure 8. Regression loss of CSD-1000R using sparse KRR with a sample-selected active set. Metrics shown are PCov-CUR (red),
PCov-FPS with random r1 (blue), and random feature selection (black, solid). Shaded regions bound the minimum and
maximum error across all α for each PCovR-inspired method. In the left panel, the grey dashed line denotes the error using the
full kernel. The right side panels show the performance at nsamples = 10,100,1000 (of 11 854).

The sample selection that underlies figure 8 is the same as for the train set selection in the previous
section, i.e. based on a linear PCovR framework based on the raw X features. That the representative samples
chosen with a linear framework are effective for a non-linear kernel model is vital, as in most cases, one
wants to use a fixed subselection while tuning the model, e.g. by optimising hyperparameters or testing
different kernels, and underscores the robustness of the selection criteria. If one wanted to select an active set
consistent with the kernel-induced metric, it would suffice to substitute the kernel matrix to the matrix of
scalar products in equation (5) or the leverage scores equation (12).

3.2. Feature selection
The techniques employed in section 3.1 to select the most representative samples can also be used to identify
the features that provide the most information about the training data set and—with a PCov
component—about structure-property relations. Selecting the most relevant features is beneficial because
the cost of evaluating x usually scales with nfeatures, and the cost of evaluating a model built on x similarly
increases with the size of the feature vector.

3.2.1. Assessing information richness and preserving distances in feature space
We begin our assessment of the performance of feature selection schemes by verifying whether the chosen
subset of features contains comparable amounts of information to the full feature vector. A quantitative,
albeit unsupervised, measure of the relative information content of two sets of features is given by the
recently-introduced global feature-space reconstruction error (GFRE) [55]

GFRE(A,B) =
√
∥B−APAB∥2 /nsamples, (23)

where A and B are different, standardised featurisations representing the same dataset. In this exercise, A is
the feature subset Xc and B is the full set of features X. We construct PAB using the representations of the
training set and evaluate GFRE(Xc,X) for the testing set.

Figure 9(a) shows that the GFRE decreases rather slowly with the number of selected features: this is to be
expected as SOAP power spectrum features are linearly independent, which in combination with a diverse
dataset containing many different types of chemical environments leads to high intrinsic dimensionality of
the feature space. In both the small and large nfeatures limit, using a PCov-augmented scheme with α < 1 leads
to a degradation of the GFRE, while for intermediate nfeatures, the effect of α is small. This is unsurprising
because the GFRE reflects only the feature vectors’ information content and not the regression accuracy: the
α= 1 case is the most compatible with minimising the error in reconstructing the full feature vectors.
Despite this fact, all data-driven selection schemes systematically reduce the GFRE compared to a random
selection, including the α→ 0 limit. CUR generally out-performs FPS, although it is more sensitive to an
increase in the supervised component’s weight.

When one wants to use Xc in the context of unsupervised-learning algorithms that depend on preserving
the value of the scalar products—and hence the distances—between feature vectors, it necessary to
incorporate a linear transformation analogous to that discussed for the case of sample selection. Imagine the
case in which two features are identical—dropping one would entail no information loss but would distort
distances in feature space. Scaling the retained feature by

√
2 would restore exactly the original metric.

Regardless of the feature selection method, one can use the matrix decomposition in equation (10) to obtain
a modified subset X̃c which better preserves the Euclidean distances in feature space.

10
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Figure 9. Performance of feature subsets of CSD-1000R in unsupervised tasks. Metrics shown are PCov-CUR (red), PCov-FPS
with random c1 (blue), and random feature selection (black, solid). Shaded regions bound the minimum and maximum error
across all α for each PCovR-inspired method.

We again start with the approximation of X in equation (10) and assume Xr = X to construct X̃c such
that X̃cX̃T

c ≈ XXT,

X̃c = Xc
[
X−
c XX

T(X−
c )

T
]1/2

. (24)

The nfeatures× nfeatures matrix
[
X−
c XX

T(X−
c )

T
]1/2

can be computed once and re-used every time one needs to
compute X̃c, even with out-of-sample data. Figure 9(b) shows the error in reproducing the Gram matrix
XXT with a feature-vector of reduced dimensionality as a measure of the distortion in feature-space metrics.
The error one incurs when truncating a PCA latent space is, by construction, the minimal that one can
achieve with a linear nfeatures-dimensional projection of X. Feature selection leads to a large distortion of the
underlying metric, with ℓK ≈ 0.1 even with more almost 50% of the features included in Xc. The use of a
correction to the selected feature matrix, as in equation (24), improves the accuracy dramatically in
preserving the feature-space metric, even though asymptotically, a PCA projection out-performs
column-selected features by up to a factor of ten.

3.2.2. Linear ridge regression
The advantages of using PCov-augmented feature selection are most apparent when considering their
application to regression tasks. To assess the performance of a given selection scheme, we consider the error
in linearly approximating a target Y given a feature subset Xc

Ŷ= XcX
−
c Y. (25)

The results in figure 10 demonstrate that both PCov-CUR and PCov-FPS improve the regression
performance when compared to random selection, often with comparable losses achieved with ten times
fewer features. As shown in the side panels, both CUR and FPS selections improve as α→ 0 and reach
full-features accuracy at nfeatures ≈ 1000. Typically, PCov-CUR will out-perform PCov-FPS for
corresponding α.

For reference, we also include the results obtained from principal components regression, where the
latent space projection from a PCA with nlatent = nfeatures is used in place of Xc to predict the properties of the

11



Mach. Learn.: Sci. Technol. 2 (2021) 035038 R K Cersonsky et al

Figure 10. Ridge regression losses for different feature selection metrics for CSD-1000r Metrics shown are PCov-CUR (red),
PCov-FPS with random c1 (blue), and random feature selection (black, solid). Shaded regions bound the minimum and
maximum error across all α for each PCovR-inspired method. In the left panel, the grey dashed line denotes the error using the
full feature vectors. Side panels depict losses for various α values used to select 10, 100, and 1000 features. In all panels, the black
dotted line denotes the regression loss for an analogous PCR.

Figure 11. Regression results using low-rank kernels built on selected features. The inset shows the KRR loss for selections of five
features at different α.

materials. As PCA provides the optimal unsupervised approximation of the feature vector, it serves as a
baseline to assess the improvements gained by incorporating a supervised component to feature selection.
Indeed, principal components regression usually performs better than unsupervised FPS and comparably to
unsupervised CUR. The PCov-inspired methods consistently out-perform PCA—which supports that
retaining the largest variance components does not necessarily yield features that are predictive for the
properties of interest [56]. This finding is also relevant for the methods that rely on feature (co)variance to
construct a hierarchy of increasingly complex representations of the atomic structure [57].

3.2.3. Kernel ridge regression
The feature-selected Xc can also be used to compute an approximation K̂ of a kernel matrix, by simply using
the compressed feature vectors to evaluate the (non-linear) kernel function K̂ij = k((Xc)i,(Xc)j). As in
section 3.1.3, we use an RBF kernel with γ= 10−4.

We assess the performance of the approximate kernel by fitting a KRR model Ŷ≈ K̂(K̂+λI)−1Y. The
non-linearity in the definition of K indicates that regression is performed in a different feature space than X,
improving upon the regression loss of the linear model based on the full X by a factor of four.

Nevertheless, as shown in figure 11, kernels built on a subset of the features chosen by a PCov-FPS or
PCov-CUR method out-perform those based on a random selection of equivalent size by up to an order of
magnitude and match a kernel built on the full X with just nfeatures ≈ 400. With an increasing number of
features, the value of α has a smaller effect than in the case of LR.

3.3. NNmodels
Thus far, we have demonstrated the effects of hybrid supervised/unsupervised feature and sample selection
for simple ML models, with a deterministic relationship between features, training set, and test error. More
complex models, such as those based on artificial NNs, can reproduce an arbitrary, non-linear dependence of
the target properties Y on the input features X. NNs are ‘trained’ by iterative minimisation of the (L2) loss
between the NN output YNN and reference values Y to determine the free parameters in the network, usually
called NN weights. Behler and Parrinello introduced a now commonplace NN to fit interatomic potentials
[33, 52, 58] based on the decomposition of atomic configurations and total energies into local, atom-centred
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environments and associated energy contributions. Environments are described using two-body and
three-body SFs, which correspond to a projection of two and three-body correlations between the neighbours
of the target atomic centre on a bespoke non-orthogonal basis. These constitute the input layer of features X,
which is connected to narrower, fully connected ‘hidden layers’, and finally combined to predict an
atom-centred decomposition of the potential energy of the system. Nodes are linked via non-linear activation
functions f a and each node i in layer k− 1 is connected to each node j in layer k with a tunable weight wk

ij. For
a single hidden layer with N nodes, a Behler–Parrinello NN to fit a single property y can be expressed as

yNN(x) = f2a

u2 + N∑
n=1

w1
n1 f

1
a

v1n +

f∑
i=1

w1
inxi

 (26)

where uk and vkj are adjustable offsets. Besides allowing us to test the effectiveness of our approaches in the
presence of a more complicated functional relationship between features and properties, BP NN also give us
an opportunity to verify the effects of including derivatives of the target (the forces) as part of the regression.

The evaluation of SFs is computationally demanding, and the number of possible two and three-body SFs
increases quadratically or cubically with the number of species. Furthermore, Behler-Parrinello SFs are not
orthogonal and are often highly redundant, which, together with considerations of computational efficiency,
strongly motivates the selection of a small number of SFs. Traditionally, SF have been selected ‘by hand’ using
a combination of chemical intuition and trial-and-error, but more recently, Imbalzano et al [40] showed that
CUR and FPS provide a viable strategy to choose a small set of SFs out of a large pool of candidates. To
investigate how a PCov augmentation impacts the selection of features in the context of a NN potential, we
construct and test such a potential for crystalline benzene. We use the first 10 000 most structurally diverse
configurations within a larger set of 55 000 FPS-ordered, thermally-distorted configurations of forms I and II
of benzene, as well as the hypothetical high-pressure Ihp and V ′ polymorphs. The dataset was generated to
train a potential to assess the relative (free) energy of different crystal polymorphs, and the details of its
makeup and reference energetics are reported in the corresponding publication [59], as well as in the public
data record [60], that also contains complete configurational energy, atomic forces, and cell stress for each
configuration, as determined by semi-local, dispersion-corrected density functional theory calculations.
The set of benzene molecular crystals considered here exhibit energies with a standard deviation of

63meV atom−1 and an average atomic force component of 1.374 eV Å
−1
. The minimum and maximum

energies differ by as much as 540meV atom−1, while the maximum force component reaches 21.633 eV Å
−1
.

We encode the structure data in a feature matrix that consist of 452 two and three-body SF, by varying the
function parameters on a regular grid, following the protocol in [40]. We focus on PCov-CUR, which has
been shown to yield consistently better performance in feature selection than PCov-FPS.

We begin by discussing how the NN’s non-linear nature affects the performance of the feature selection
schemes. We compare LR, KRR using an RBF kernel, and the Behler–Parrinello NN, using as inputs subsets
of the SFs, determined by PCov-CUR and random selection. For this purpose the 10 000 benzene
configurations were randomly divided into 90:5:5 train:validation:test. All models were subsequently trained
on the same training set, using only energy information, and tested on the same independent test set to
determine the errors reported in figure 12. All hyperparameters involved in constructing the linear and
kernel ridge models, i.e. the regularisation and the characteristic length scale of the RBF kernel, were
individually optimised for each feature selection by minimising the energy RMSE for the validation set.
While we might have similarly optimised the architecture of the NN potentials, simply adopting the
parameters of established Behler–Parrinello type NN potentials [61–64] more than suffices to assess the
impact of incorporating information regarding the target property in the feature selection. We train four NN
potentials for feature selection and report the best out of the four results.

Figure 12 demonstrates the interplay between the nature of the features, the selection protocol, and the
regression model. Models that incorporate increasing levels of non-linearity lead to better regression
performance, with KRR usually out-performing LR by 25%, and NN reducing the energy RMSE by an
additional 40%. A side-effect of using highly-correlated features is that the performance of a random
selection is not particularly poor in comparison with an unsupervised CUR selection. A PCov-CUR(α= 0)
selection that incorporates target information allows one to identify the most relevant features for
constructing the potential, resulting in a very substantial reduction of the energy RMSE, particularly for
small nfeatures values. For all values of α and number of features, PCov-CUR selections of SFs consistently
out-perform (and never perform worse than) the average random selection. Furthermore, PCov-CUR
selections at α= 0, consistently out-perform unsupervised CUR selections across all regression schemes.

This improvement is particularly remarkable given the gap between the linear, energy-based supervised
framework that underlies the PCov augmentation and the non-linear predictions of atomic forces. Thus, the
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Figure 12. RMSE for energies (left) and forces (right) from various models and feature selections. The dotted and solid lines
denote results for α= 0 and α= 1, respectively. Darker error bars and/or grey regions represent the mean and standard deviation
of errors for random feature selection.

methods we propose are robust and can be applied to improve feature selection beyond linear or kernel
methods. Overall, the best PCov-CUR selection reduces by 50% the number of SF while retaining roughly
the same force RMSE, indicating direct computational savings when using the NN potential and a simpler,
less memory-intensive task when training the model.

4. Conclusions

Selecting from a large pool of candidates the samples and/or features most relevant for an ML task can be
very advantageous from a computational perspective and reveal the most important or insightful descriptors.
This is particularly useful in cases in which features are constructed systematically, leading potentially to
large and redundant input representations. Unsupervised methods, based on a low-rank approximation of
the feature matrix or maximising diversity, provide an effective approach to prune a training set or a
collection of descriptors with little loss in performance.

Whenever a featurisation is used in a supervised model, it is appealing to incorporate the regression
target into the feature or sample selection by combining two methods (FPS and CUR) with a hybrid
supervised/unsupervised linear scheme, PCovR. For a variety of different problems, ranging from reducing
the size of a training set to active point selection to linear and non-linear model fitting, we find that such
PCov-augmented selections out-perform almost universally their unsupervised counterparts, which makes it
possible to obtain (with much-reduced effort) models that achieve comparable prediction accuracy to the
model based on full features and training set. The simplicity of PCov-FPS and PCov-CUR, the ease by which
they can be extended to kernelised schemes, and the empirical evidence showing that they can also improve
the accuracy of non-linear NN models make them applicable to virtually any regression task. These results,
together with the availability of an open-source implementation [65], give these methods the potential to
become a standard tool in the application of data-driven methods to different fields of science.
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Code availability

Software for PCov-CUR or PCov-FPS can be found at www.github.com/cosmo-epfl/scikit-cosmo with
documentation at scikit-cosmo.readthedocs.io.

Appendix. PCov feature space

Given the singular value decomposition of the feature matrix X= UKΛ
1/2UT

C it is possible to define a PCov
feature matrix X̃= UKL̃1/2UT

C, with

L̃= αΛ+(1−α)UT
KYY

TUK. (A1)

It is easy–albeit tedious (see S1.2)—to check that X̃X̃T = K̃ and X̃TX̃= C̃. In general, for α ̸= 1, the matrix L̃
is not diagonal, and so the singular vectors of X̃ are not given by UK and UT

C, but can be obtained by
diagonalising K̃ or C̃. Equation (A1) also makes it possible to diagonalise L̃= UL̃Λ̃U

T
L̃
and compute

UK̃ = UKUL̃ and UC̃ = UCUL̃,

ORCID iDs

Rose K Cersonsky https://orcid.org/0000-0003-4515-3441
Benjamin A Helfrecht https://orcid.org/0000-0002-2260-7183
Edgar A Engel https://orcid.org/0000-0003-2944-9445
Sergei Kliavinek https://orcid.org/0000-0001-8326-325X
Michele Ceriotti  https://orcid.org/0000-0003-2571-2832

References

[1] Bolton R and Hand D 2002 Statistical fraud detection: a review Stat. Sci. 17 235–49
[2] Fischer T and Krauss C 2018 Deep learning with long short-term memory networks for financial market predictions Eur. J. Oper.

Res. 270 654–69
[3] Huang Z, Chen H, Hsu C, Chen W and Wu S 2004 Credit rating analysis with support vector machines and neural networks: a

market comparative study Decis. Support Syst. 37 543–58
[4] Tsai C-F and Wu J-W 2008 Using neural network ensembles for bankruptcy prediction and credit scoring Expert Syst. Appl.

34 2639–49
[5] Guyon I, Weston J and Barnhill S 2002 Gene selection for cancer classification using support vector machinesMach. Learn.

46 389–422
[6] Peng X, Lin P, Zhang T and Wang J 2013 Extreme learning machine-based classification of ADHD using brain structural MRI data

PLoS One 8 11
[7] Rajkomar A et al 2018 Scalable and accurate deep learning with electronic health records NPJ Digital Med. 1 18
[8] Wolf F A, Angerer P and Theis F J 2018 SCANPY: large-scale single-cell gene expression data analysis Genome Biol. 19 15
[9] Belgiu M and Dragut L 2016 Random forest in remote sensing: a review of applications and future directions ISPRS J. Photogramm.

Remote Sens. 114 24–31
[10] Gramfort A, Luessi M, Larson E, Engemann D A, Strohmeier D, Brodbeck C, Parkkonen L and Haemaelaeinen M S 2014 MNE

software for processing MEG and EEG data Neuroimage 86 446–60
[11] Mountrakis G, Im J and Ogole C 2011 Support vector machines in remote sensing: a review ISPRS J. Photogramm. Remote Sens.

66 247–59
[12] Berrueta L A, Alonso-Salces R M and Heberger K 2007 Supervised pattern recognition in food analysis J. Chromatogr. A

1158 196–214
[13] Daina A, Michielin O and Zoete V 2017 SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal

chemistry friendliness of small molecules Sci. Rep. 7 42717
[14] McGibbon R T et al 2015 MDTraj: a modern open library for the analysis of molecular dynamics trajectories Biophys.

J. 109 1528–32
[15] Blum A L and Langley P 1997 Selection of relevant features and examples in machine learning Artif. Intell. 97 245–71
[16] Li J, Cheng K, Wang S, Morstatter F, Trevino R P, Tang J and Liu H 2018 Feature selection: a data perspective ACM Comput. Surv.

50 94
[17] Xu X, Liang T, Zhu J, Zheng D and Sun T 2019 Review of classical dimensionality reduction and sample selection methods for

large-scale data processing Neurocomputing 328 5–15
[18] Du Q, Faber V and Gunzburger M 1999 Centroidal Voronoi tessellations: applications and algorithms SIAM Rev. 41 637–76
[19] García-Osorio C, de Haro-García A and García-Pedrajas N 2010 Democratic instance selection: a linear complexity instance

selection algorithm based on classifier ensemble concepts Artif. Intell. 174 410–41
[20] Akdemir D, Sanchez J I and Jannink J-L 2015 Optimization of genomic selection training populations with a genetic algorithm

Genet. Selection Evol. 47 38
[21] Wang X-Z, Dong L-C and Yan J-H 2012 Maximum ambiguity-based sample selection in fuzzy decision tree induction IEEE Trans.

Knowl. Data Eng. 24 1491–505
[22] Widrow B and Hoff M E 1960 Adaptive switching circuits ;1553-1Office of Naval Research
[23] Zeng X and Yeung D S 2001 Sensitivity analysis of multilayer perceptron to input and weight perturbations IEEE Trans. Neural

Netw. 12 1358–66

15

https://www.github.com/cosmo-epfl/scikit-cosmo
https://scikit-cosmo.readthedocs.io
https://orcid.org/0000-0003-4515-3441
https://orcid.org/0000-0003-4515-3441
https://orcid.org/0000-0002-2260-7183
https://orcid.org/0000-0002-2260-7183
https://orcid.org/0000-0003-2944-9445
https://orcid.org/0000-0003-2944-9445
https://orcid.org/0000-0001-8326-325X
https://orcid.org/0000-0001-8326-325X
https://orcid.org/0000-0003-2571-2832
https://orcid.org/0000-0003-2571-2832
https://doi.org/10.1214/ss/1042727940
https://doi.org/10.1214/ss/1042727940
https://doi.org/10.1016/j.ejor.2017.11.054
https://doi.org/10.1016/j.ejor.2017.11.054
https://doi.org/10.1016/S0167-9236(03)00086-1
https://doi.org/10.1016/S0167-9236(03)00086-1
https://doi.org/10.1016/j.eswa.2007.05.019
https://doi.org/10.1016/j.eswa.2007.05.019
https://doi.org/10.1023/A:1012487302797
https://doi.org/10.1023/A:1012487302797
https://doi.org/10.1371/journal.pone.0079476
https://doi.org/10.1371/journal.pone.0079476
https://doi.org/10.1038/s41746-018-0029-1
https://doi.org/10.1038/s41746-018-0029-1
https://doi.org/10.1186/s13059-017-1382-0
https://doi.org/10.1186/s13059-017-1382-0
https://doi.org/10.1016/j.isprsjprs.2016.01.011
https://doi.org/10.1016/j.isprsjprs.2016.01.011
https://doi.org/10.1016/j.neuroimage.2013.10.027
https://doi.org/10.1016/j.neuroimage.2013.10.027
https://doi.org/10.1016/j.isprsjprs.2010.11.001
https://doi.org/10.1016/j.isprsjprs.2010.11.001
https://doi.org/10.1016/j.chroma.2007.05.024
https://doi.org/10.1016/j.chroma.2007.05.024
https://doi.org/10.1038/srep42717
https://doi.org/10.1038/srep42717
https://doi.org/10.1016/j.bpj.2015.08.015
https://doi.org/10.1016/j.bpj.2015.08.015
https://doi.org/10.1016/S0004-3702(97)00063-5
https://doi.org/10.1016/S0004-3702(97)00063-5
https://doi.org/10.1145/3136625
https://doi.org/10.1145/3136625
https://doi.org/10.1016/j.neucom.2018.02.100
https://doi.org/10.1016/j.neucom.2018.02.100
https://doi.org/10.1137/S0036144599352836
https://doi.org/10.1137/S0036144599352836
https://doi.org/10.1016/j.artint.2010.01.001
https://doi.org/10.1016/j.artint.2010.01.001
https://doi.org/10.1186/s12711-015-0116-6
https://doi.org/10.1186/s12711-015-0116-6
https://doi.org/10.1109/TKDE.2011.67
https://doi.org/10.1109/TKDE.2011.67
https://doi.org/10.1109/72.963772
https://doi.org/10.1109/72.963772


Mach. Learn.: Sci. Technol. 2 (2021) 035038 R K Cersonsky et al

[24] Ng WW, Yeung D S and Cloete I 2003 Input sample selection for RBF neural network classification problems using sensitivity
measure Proc. IEEE Int. Conf. on Systems, Man and Cybernetics vol 3 (IEEE) pp 2593–8

[25] Hart P E 1968 The condensed nearest neighbor rule IEEE Trans. Inf. Theory 14 515–6
[26] Balakrishnan K and Honavar V 1996 On sensor evolution in robotics Genetic Programming 1996 (Stanford University 28–31 July

1996) vol 98 pp 455–60
[27] Ding C and Peng H 2005 Minimum redundancy feature selection from microarray gene expression data J. Bioinform. Computat.

Biol. 03 185–205
[28] Fan Y-J and Chaovalitwongse W A 2010 Optimizing feature selection to improve medical diagnosis Ann. Oper. Res. 174 169–83
[29] Chuang L Y, Chang HW, Tu C J and Yang C H 2008 Improved binary PSO for feature selection using gene expression data

Computat. Biol. Chem. 32 29–38
[30] de Jong S and Kiers H A L 1992 Principal covariates regression: part I. Theory Chemometrics and Intelligent Laboratory Systems

Series Proc. 2nd Symp. on Chemometrics vol 14 pp 155–64
[31] Cuny J, Xie Y, Pickard C J and Hassanali A A 2016 Ab Initio quality NMR parameters in solid-state materials using a

high-dimensional neural-network representation J. Chem. Theory Comput. 12 765–73
[32] Paruzzo F M, Hofstetter A, Musil F, De S, Ceriotti M and Emsley L 2018 Chemical shifts in molecular solids by machine learning

Nat. Commun. 9 4501
[33] Behler J and Parrinello M 2007 Generalized neural-network representation of high-dimensional potential-energy surfaces Phys.

Rev. Lett. 98 146401
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