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Proteins are the basic substances that undertake human life activities, and they often
perform their biological functions through interactions with other biological
macromolecules, such as cell transmission and signal transduction. Predicting the
interaction sites between proteins can deepen the understanding of the principle of
protein interactions, but traditional experimental methods are time-consuming and
labor-intensive. In this study, a new hierarchical attention network structure, named
HANPPIS, by adding six effective features of protein sequence, position-specific
scoring matrix (PSSM), secondary structure, pre-training vector, hydrophilic, and amino
acid position, is proposed to predict protein–protein interaction (PPI) sites. The experiment
proved that our model has obtained very effective results, which was better than the
existing advanced calculation methods. More importantly, we used the double-layer
attention mechanism to improve the interpretability of the model and to a certain
extent solved the problem of the “black box” of deep neural networks, which can be
used as a reference for location positioning on the biological level.

Keywords: protein–protein interaction, multilevel attention mechanism, feature fusion, deep learning, protein
features

INTRODUCTION

Proteins participate in various biological processes in organisms. They usually do not play a single
role but interact with other biological macromolecules to perform biological functions (Geng et al.,
2015). Protein–protein interactions (PPIs) refer to the process in which two or more protein
molecules form a protein complex through non-covalent bonds. Protein interactions play an
extremely important role in most biochemical functions (Bradford and Westhead, 2005; Nilofer
et al., 2020). The identification of protein interaction sites can help researchers understand how
proteins perform their biological functions (Ofran and Rost, 2003; Nilofer et al., 2020), and it can also
help design new antibacterial drugs (Gainza et al., 2020). Conventional biological experimental
methods, such as two-hybrid screening, affinity purification, and mass spectrometry, can be used to
identify protein interaction sites (Chung et al., 2007; Gainza et al., 2020). Biological experimental
methods have disadvantages of being expensive and time-consuming. Therefore, it is of great value
for biologists to develop accurate calculation methods to predict protein interaction sites.

In order to solve the problem concerning expenses, many non-biochemical experimental methods
have been developed (Li et al., 2021), and most of the calculation methods are based on machine
learning. Zhang and Kurgan (2019) evaluated a large number of functional features that could be
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used, such as position-specific scoring matrix (PSSM),
evolutionary conservation (ECO), and relative solvent
accessibility (RSA). In the protein interaction site prediction
methods designed by the predecessors, the high score
fragment pairs (HSP) as (Li et al., 2021) and the one-hot
(Yang et al., 2016; Wang et al., 2019) and amino acid-
embedding representations (Zeng et al., 2020) were used to
characterize protein sequences as model input features. Wang
et al. (2010) proposed a new method for predicting protein
interaction sites in hybrids by using the radial basis function
neural network (RBFNN) model. This method only used the
evolutionary conservation information of the protein and the
spatial sequence profile and has achieved good prediction results.

Zhou and Shan (2001) proposed a neural network-based
prediction method, taking the sequence distribution of
adjacent amino acids and solvent exposure as input. Ofran
and Rost (2006) proposed a neural network model for the
interaction sites identified from sequence (ISIS), which were
trained based on sequence contours and structural features
predicted by the sequence. Porollo and Meller (2007) proposed
a method named SPPIDER based on the support vector machine,
neural network, and linear discriminant analysis, which used 19
features extracted from the sequence. Mizuguchi and Mizuguchi
(2010) developed a predictor called PSIVER, which is a naive
Bayes classifier based on a position-specific scoring matrix
(PSSM), predicting relative solvent accessibility and kernel
density estimation. Dhole et al. (2014) proposed a logistic
regression classifier LORIS that uses L1 regularization. In
addition, Dhole et al. (2015) proposed a new artificial neural
network prediction method that used PSSM features, average
cumulative hydrophilicity, and predicted relative solvent
accessibility to train SPRINGS.

In these studies, a large number of features extracted from
protein sequences are used. The commonly used features include
evolutionary information and secondary structure (Murakami
and Mizuguchi, 2010). In addition to these commonly used
features, there are some other physical, chemical, biological,
and statistical features, such as the accessible surface area of
the protein, protein size, backbone flexibility, and sequence
specificity, which have been used for protein interaction site
prediction. However, existing methods tend to pay too much
attention to protein sequence information, ignoring the
characteristics of proteins at the biological level, and most
machine learning methods are inexplicable.

In order to solve the above problems, we propose a double-
layer attention mechanism prediction model based on graph
convolution that uses multidimensional features as input. The
main contributions are as follows:

1) For paying more attention to the features at the biological
level, we add six effective features of proteins as the input of
the model, which can dig out more potential information.

2) The use of the double-layer attention mechanism improves
the performance and interpretability of the model and solves
the “black box” problem of deep neural networks to a certain
extent.

METHODS

Data
In this experiment, we used three benchmark data sets, namely
Dset_186, Dset_72 (Murakami and Mizuguchi, 2010), and
Dset_164 (Geng et al., 2015). Dset_186 is constructed from
the Protein Data Ban (PDB) database, which is dedicated to
the three-dimensional structure of proteins and nucleic acids.
Dset_186 is composed of 186 protein sequences, and their
sequence homology is less than 25%, and through X-ray
crystallography, their resolution is found to be less than 3 Å.
The structure of Dset_72 and Dset_164 is the same as that of
Dset_186. Dset_72 contains 72 protein sequences, and Dset_164
consists of 164 protein sequences. Therefore, we have a total of
422 different protein sequences. In this study, if an amino acid
has an absolute solvent proximity less than 1Å2 before and after
binding with other proteins, then it is defined as the interaction
site; otherwise, it is defined as the non-reciprocal site of action.

Dset_186, Dset_72, and Dset_164 contain 1,923, 5,517 and
6,096 active sites and 16,217, 30,702 and 27,585 non-interactive
sites, respectively. Although the protein sequences in the three
data sets are not duplicated, the three data sets are from different
research groups. So, in order to ensure that the training set and
the test set have the same distribution, we integrated the three
datasets into a fusion data set. Next, we divided the fused data set
into a training set (approximately 80% of the randomly selected
protein sequences) and a test set (the remaining 20% of the
protein sequences). In the end, we obtained 350 protein
sequences in the training set and 70 protein sequences in the
test set. Among them, we deleted two protein sequences without
defined secondary structure of proteins (DSSP).

Feature Generation
Feature generation is a key step in the deep learning framework.
Excellent features can perfectly represent the various properties of
the protein, and features with insufficient expression ability will
reduce the accuracy of the deep learning model. In order to better
obtain the global features of the protein, we combined six effective
features of the protein amino acid encoding, sequence, and
structure as input vectors for training. These features include
protein sequence, PSSMmatrix, secondary structure, pre-training
vector, hydrophilicity, and amino acid location.

Amino Acid Encoding
One-hot encoding. One-hot encoding is one of the simplest but
very effective features, because the original protein sequence can
accurately represent each amino acid and its position. Most
proteins are composed of 20 different amino acids, so we use
20-dimensional one-hot codes to represent the types of various
amino acids in the protein.

Sequence Features
PSSM matrix. The evolutionary information in PSSM (Jeong
et al., 2011) has been proven to be effective for PPI site prediction.
We run the PSI-BLAST algorithm and search NCBI’s non-
redundant sequence database with three iterations and a
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threshold of 0.001 to generate the PSSM matrix. Each amino acid
in the protein sequence is encoded as a vector with 20 numbers,
which represents the probability of these 20 amino acids
appearing at that position.

Hydrophilic characteristics. The hydrophilic characteristics of
amino acids are determined through experiments, and this
characteristic determines the free energy of the transfer of
each amino acid. In detail, it is determined by the amount of
change in the free energy of amino acids when they move from
water to organic solvents. It can be measured by solubility in
water and organic solvents. It also contains energetic information
about protein interactions and is a very important feature in
protein.

Structure Features
Protein secondary structure. Secondary structure features are
often used in protein prediction. We use the DSSP program to
generate secondary structure information. It encodes the
structural information of amino acids and uses it to predict
protein interaction sites. In this article, we use eight types of
secondary structure states (G (3_10-helix), H (α-helix), I
(π-helix), B (isolated bridge), E (extended sheet), T (β-turn), S
(bend), and other states). Considering that some amino acids
have no secondary structure status in the DSSP file, we use a one-
hot vector of dimension 9 to encode them. The first eight
dimensions indicate the state of each amino acid, and the last
dimension indicates whether there is information about the state
of the related secondary structure.

Pre-training vector based on SeqVec. In this experiment, we
use the pre-training model, that is, SeqVec to obtain the pre-
training vector. SeqVec is a protein sequence pre-training model
trained using deep unsupervised learning (Villegas-Morcillo
et al., 2020). It is based on the model ELMo (Heinzinger et al.,
2019) and consists of a character-level convolutional neural
network (char-CNN) and two-layer bidirectional long short-
term memory (LSTM). The CNN embeds each amino acid in
a latent space, generates the corresponding feature vector, and
then uses LSTM to model the context of the surrounding amino
acids. The model adds two LSTM layers to provide the final
context-aware embedding. These embeddings indicate excellent
performance in protein classification tasks, such as inferring
protein secondary structure, structural category, disordered
regions, and cell location. At the level of each amino acid, the
predicted secondary structure and the regions with inherent
disorder are significantly better than one-hot encoding or the
method generated by Word2vec. The generation of protein
embedding representations is rapid, and it only takes 0.03 s for
SeqVec to generate the evolution information of the target
protein. We choose to use SeqVec to represent each amino
acid in the sequence as a feature vector with a dimension of
1,024 for subsequent training.

Residue location characteristics. The DeepPPISP model
proposed by Zeng et al. (2020) shows that the global
information of proteins helps predict protein interaction sites.
We use the position information of each residue as the input
feature because it provides global position information, and it can
also make up for the defect that the attention model cannot

capture in position information. The position of the residue in the
protein is between 1 and L (protein length). We divide the
position by the length of the protein so that a final value
between 0 and 1 is obtained and then use this value as the
residue position feature and input the model for training.

Model Structure
The hierarchical attention network (HAN) model (Yang et al.,
2016) uses a multilevel attention mechanism to classify
documents and has achieved good results. The HAN model
has two notable features: 1) a hierarchical thinking to
represent documents is used. The document is regarded as
composed of sentences, and the sentences are regarded as
composed of words and 2) the HAN model applies two
attention mechanisms, which are used in documents. At the
document level and sentence level, the attention weight of the
words is calculated to obtain the representation of the sentence,
and then the attention weight of the sentence is calculated to
obtain the representation of the document. The abovementioned
mechanism enables the HAN to give different sentences and
words at different degrees of importance.

Inspired by the HAN, we applied it to the task of predicting
PPI sites. The structure of our model is shown in Figure 1. First,
we use a sliding window to obtain protein sequence fragments
representing protein interaction sites and then divide the
fragments into smaller fragments through K-mers. Next, we
compare individual amino acids to words in the document.
K-mers are analogous to sentences in documents, and the
entire protein sequence fragment is analogous to documents.
Then, the hierarchical attention model is used for training and
prediction, and the final model is obtained. The model obtained
in this way can identify the contribution degree of a single amino
acid to K-mers and the contribution degree of K-mers to the
entire protein sequence fragment. By further analysis, we can
deduce which amino acids contribute to the target amino acid as
the binding site of protein interaction, what is the specific
contribution, and which amino acids may be invalid or can be
obtained.We could also know the important characteristics of the
amino acids that become the interaction sites of proteins.

In the model, we use a sliding window to integrate the features
of the neighboring amino acids. We divide the fixed-length
protein sequence into multiple fragments using K-mers and
then use the previously introduced method to vectorize the
amino acids in the fragments. After obtaining the vector
representation of all amino acids, we use the Bi-GRU to
encode each amino acid and then use the attention
mechanism to calculate the importance of each amino acid for
K-mers. Then, we obtain the vector of each K-mer after weighing
and summing. We use the same method to encode the K-mer
vector, obtain the vector representation of the protein sequence
through the attention layer, and finally use Softmax for
classification.

The features we use include the 20-dimensional one-hot
amino acid feature, the PSSM matrix feature with the same
dimension of 20, the 9-dimensional secondary structure
feature, the 1-dimensional hydrophilic feature, the 1-
dimensional amino acid position feature, and 1,024-
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dimensional pre-training vector feature. In order to prevent the
pre-training vector feature dimensionality from being too large
and affecting the other four features, we used a layer of

feedforward neural network to reduce its dimensionality,
reducing it to 50 dimensions, and then splicing the other five
features to finally get the 101-dimensional amino acid feature

FIGURE 1 | Structure of HANPPIS. It consists of three steps, including embedded representation, amino acid–level attention and K-mers–level attention.We obtain
vector representations of protein sequence fragments through multidimensional features. The vector representation of the protein fragment is the input to the first layer of
the attention mechanism, and then the vector representation of the protein sequence is obtained through the second layer of attention and finally input to the prediction
layer.

FIGURE 2 | Amino acid feature generation and expression. This figure illustrates the specific details of the amino acid signature generation. Among them, because
the pre-training vector feature dimension is too large, a layer of feedforward neural network is used to reduce the dimension to 50 dimensions. Then, the remaining five
features are spliced and finally the 101-dimensional amino acid feature vector as the input of the entire model is obtained.
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representation vector which is used as the input of the entire
model. The processing process is shown in Figure 2.

Model Training Settings
Our deep learning framework is implemented through Keras. The
loss function we use is the cross-entropy loss function, which is
defined as follows:

Loss � −1
n
∑[ylog(ypred) + (1 − y)log(1 − ypred)],

where n is the number of all training data, y is the real label, and
ypred is the predicted label.

Our model uses Adam as the optimizer and the following
formula to update the weights:

θt+1 � θt − α		̂
vt

√ + ε
,

where θt+1 is the updated parameter, α is the learning rate, ε is the
constant added to maintain numerical stability, andm̂t and v̂t are
the first and second moments after deviation correction,
respectively.

In order to extract the contextual sequence features of amino
acids at protein interaction sites, we set the sliding window length
to 7 and the protein sequence length to 500. Protein sequences
longer than 500 will be truncated. For the deep learning model,
we set the training batch size to 3, the number of neurons in the
LSTM layer and the attention layer in the double-layer attention
are both set to 86, and the fully connected layer connected by the
pre-training vector has 50 neurons. The positive and negative
samples of the training set are not uniformly distributed, so we set
the sample weight at about 1:7, which allows the model to pay
more attention to the positive samples during training and
improve the performance of the model.

RESULTS AND DISCUSSIONS

Comparison With the Benchmark Method
To evaluate the performance of HANPPIS in predicting protein
interaction sites, we compared HANPPIS with seven competing
methods. These six competitive methods all use machine learning
or deep learning methods as model training. SPPIDER (Porollo
and Meller, 2007) uses an alternative machine learning
technology, which combines fingerprints with other sequence
and structural information to predict PPI sites. ISIS (Ofran and

Rost, 2006) uses a shallow neural network to combine predicted
structural features with evolutionary information to predict PPI
sites. RF_PPI was developed by Hou et al. (2017). This algorithm
uses various protein functions and characteristics and applies it to
the random forest algorithm to predict protein interaction sites.
PSIVER (Murakami and Mizuguchi, 2010) used sequence
features (PSSM matrix and predicted accessibility) and then
used a naive Bayes classifier to predict PPI sites. SPRINGS
(Dhole et al., 2015) used a shallow neural network algorithm
based on evolutionary information, average cumulative
hydrophilicity, and predictive relative solvent accessibility to
predict PPI sites. In addition, we used graph CNNs to predict
PPI sites (GCNPPIS) as a comparative experimental model. The
comparison results are shown in Table 1.

Table 1 shows the results of HANPPIS and other seven
competitive methods on the test set. It is not difficult to find
that most of the evaluation indicators measured by HANPPIS are
higher than other competitive methods. Although the accuracy
rate of HANPPIS is not the highest, other evaluation indicators
are higher than competitive methods. Since protein interaction
site prediction is an unbalanced learning issue, the ratio of
positive and negative data samples is about 1:5.5, so we pay
more attention to F1 in the evaluation indicators. Among all
existing methods, HANPPIS has the highest F1 value, surpassing
existing models.

Influence of Different Input Features
Obviously, different types of features (original protein sequence,
PSSM matrix, secondary structure, hydrophilicity, positional
features, pre-training vectors) play different roles in the model.
In order to evaluate the importance of each feature, we delete
each input feature of HANPPIS separately in the ablation
experiment. Specifically, we compared the performance of
different models that delete the original protein sequence,
that is, PSSM matrix, secondary structure features,
hydrophilic features, location features, and pre-training
vectors. In order to distinguish between different models, we
concluded the following definitions:

1) Model_Dpsf: Delete original protein sequence features
2) Model_Dpm: Delete the PSSM matrix
3) Model_Dssf: Delete secondary structure features
4) Model_Dhf: Delete hydrophilic features
5) Model_Dlf: Delete location features
6) Model_Dptv: Delete the pre-training vector

TABLE 1 | Model compares the experimental results on the test set.

Model Accuracy Precision Recall F1

SPPIDER 0.622 0.209 0.459 0.287
ISIS 0.694 0.211 0.362 0.267
RF_PPI 0.598 0.173 0.512 0.258
PSIVER 0.653 0.253 0.468 0.328
SPRINGS 0.631 0.248 0.598 0.350
GCNPPIS 0.623 0.233 0.395 0.293
HANPPIS 0.631 0.291 0.605 0.393

TABLE 2 | Results of ablation experiments.

Model Accuracy Precision Recall F1

Model_Dpsf 0.554 0.237 0.580 0.352
Model_Dpm 0.605 0.269 0.635 0.378
Model_Dssf 0.594 0.263 0.612 0.374
Model_Dhf 0.632 0.282 0.591 0.381
Model_Dlf 0.622 0.295 0.588 0.379
Model_Dptv 0.578 0.275 0.510 0.319
HANPPIS 0.631 0.291 0.605 0.393
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The results of the ablation experiment are shown in Table 2.
The results show that deleting the one-hot feature and the pre-
training vector feature has the greatest impact on the model. After
deletion, all indicators of the model are reduced at the same time,
and the F1 value is as low as 0.319. When deleting several other
features, the performance of the model also drops slightly. The
experimental results show that comprehensive consideration of
these features can obtain more comprehensive protein sequence
information, which is helpful to improve the performance of the
model and obtain better prediction results.

The Effect of Sliding Window Size
In addition to testing different feature inputs, we also studied the
impact of different sizes of sliding windows on the model.
Specifically, we use sliding windows of different lengths, that
is, 7, 9, 11, 13, and 15 to observe the performance of HANPPIS.
The results in Table3 show that the model has the highest F1
value when the length of the sliding window is 7.

The sliding window has less impact on model performance. It
may be because the task is to classify specific amino acids, and the
surrounding amino acids are only used as a context to assist. In
order to further verify our conjecture, we performed a visual

analysis of the attention weight, and the details can be seen in the
Interpretability of the model section.

Interpretability of the Model
In order to overcome the common “black box” problem of deep
learning and understand the role of contextual amino acids, we
randomly selected a sample, which is the 135th amino acid of the
protein 1Z0J_A in Dset186. The sample sequence is
“RDAKDYA”, and the target amino acid is “K”. We visualized
the attention distribution of K-mers–level and amino acid–level
to view the contribution of each amino acid or K-mers to protein
interaction sites. The experimental results are shown in Figure 3.

As shown in Figure 3, in the K-mers–level attention, it can be
seen that the central position of K-mers has the highest attention
ratio, and the surrounding K-mers attention weight is less than
half of the central position. In the amino acid–level attention, the
“K” in the center position also is assigned the highest attention
weight. This is consistent with the situation of the protein
interaction site task. Because the prediction is whether the
central amino acid is the binding site and the surrounding
amino acids exist as auxiliary information of the central amino
acid, the model’s attention to the center position will be larger,
and the proportion of the two sides will pay less attention.

It can be seen from Figure 3B that the attention weights of
amino acids “R” and “A” are both less than 0.05, which is
probably the reason why the sliding window does not have a
high degree of influence on the model because the farther away
from the center, the lower the weight of the amino acid.
Therefore, even if the sliding window is enlarged, it has little
effect on the amino acids in the central position.

In general, we verified that HANPPIS is suitable for
discovering important patterns in protein sequences, and the

TABLE 3 | Effect of the sliding window on the model.

Window size Accuracy Precision Recall F1

7 0.631 0.291 0.605 0.393
9 0.638 0.298 0.551 0.381
11 0.601 0.281 0.593 0.387
13 0.654 0.300 0.540 0.379
15 0.578 0.275 0.690 0.389

FIGURE 3 | Attention distribution. This figure shows the attention visualization result of one of the samples (from the 135th amino acid of protein 1Z0J_A in Dset186,
the sample sequence is “RDAKDYA” and the target amino acid is “K”). (A) shows the proportion of K-mers–level attention distribution and (B) shows the distribution of
amino acid–level attention. As shown in the figure, the center position has the highest proportion of attention, which is also consistent with the task of protein
interaction sites.
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attention mechanism can understand its relationship in context,
which greatly increases the interpretability of the model.

CONCLUSION

The accurate prediction of protein interaction sites can promote
the understanding of protein biological functions. In this article,
we propose a deep learning framework HANPPIS to predict
protein interaction sites at the amino acid level. The difference
between HANPPIS and other existing methods is that the model
uses hierarchical attention combined with neural networks to
predict protein interaction sites. HANPPIS captures global
sequence features through Bi-GRU, so that it can easily
simulate the relationship between the target amino acid and
the entire protein sequence. After Bi-GRU processing, the
attention layer is used to let the model assign higher weights
to the parts that need attention, and further follow-up results can
be obtained. The experiment was repeated twice to generate
attention weights for amino acids and K-mers and finally
classify and output them through Softmax. The results show
that HANPPIS basically surpasses the existing competitive
methods in the task of predicting protein interaction sites.
Sequence-based protein interaction site prediction is still a
challenging problem, and one of the reasons is that there are
no unique attributes in the sequence to directly analyze the
protein sequence. But in this study, we showed that
hierarchical attention can be used for protein interaction site
prediction, and more important parts of disordered protein
sequences can be found. The multiple experimental results
also demonstrated the crucial role of attention mechanism that
can increase the interpretability of the model and provided the
possibility and direction for further exploration of the mystery of
proteins.

But our method has some limitations, such as HANPPIS
requires the multidimensional features of the protein as
input. Obviously, these features may be missing in some
data sets. In addition, the samples for testing attention
visualization in the experiment are not enough. In future
studies, we would be committed to use fewer features to obtain
better performance and improve the interpretability of
the model.
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