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ABSTRACT
Many of the datasets in real-world applications contain incom-
pleteness. In this paper, we approach the effects and possible 
solutions to incomplete databases in regression, aiming to 
bridge a gap between theoretically effective algorithms. We 
investigated the actual effects of missing data for regression 
by analyzing its impact in several publicly available databases 
implementing popular algorithms like Decision Tree, Random 
Forests, Adaboost, K-Nearest Neighbors, Support Vector 
Machines, and Neural Networks. Our goal is to offer 
a systematic view of how missing data may affect regression 
results. After exhaustive simulation analyzing eight public data-
sets from UCI and KEEL (Abalone, Arfoil, Bike, California, 
Compactiv, Mortage, Wankara and Wine), we concluded that 
the effect of missing data may be significant. The results 
obtained showed that K-Nearest Neighbors works better than 
others in the regression of data that has missing data.
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Introduction

A considerable number of efficient algorithms for regression have been pro-
posed in the literature (Bishop 2016; Deng and Yu 2013). Most of them 
intrinsically assume that the lack of data does not interfere in the analysis of 
the data sets. In this paper, we approach the effects and possible solutions to 
incomplete databases in regression, trying to contribute in bridging a gap 
between algorithms and their real-world applications. Missing data has been 
the object of study of many contributions that provided different methods, 
especially in the areas such as database and data integrity (Du, Liu, and Wang 
2017; Ludtke, Robitzsch, and Grund 2017; Peng and Lei 2005; Zhang and 
Wang 2017).

In recent years some works have addressed the problem of missing data, 
such as: proposing a simple sequential method to attempt to identify the form 
of missingness (Madden et al. 2018). A methodology is proposed in Perez-Ruiz 
and Escarela (2018) for the regression analysis of generalized linear models 
(GLMs). The results show that the methodology is rather robust and flexible, 
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representing a competitive alternative to traditional techniques; To verify 
trend analysis of temperature data for the Narayani River basin (Nepal), the 
Multiple regression and empirical mode decomposition (EMD) methods were 
applied to fill in missing data and to detect trends (Chand et al. 2021); 
According to Li, Weng, Liao, Keel, & Brown (2021), missing data can impair 
the analysis of distribution grid impedance and topology estimation in smart 
grid systems. The authors used the Factorized Ordinary Least Square method 
to mitigate the error of the missing data. According to Jadhav, Pramod, and 
Ramanathan (2019) missing data is a common problem faced by researchers 
and data scientists. The authors compared seven data imputation methods and 
concluded that the kNN imputation method presented robust results in front 
of the other techniques, and; a machine learning approach for supporting 
clinical diagnosis of attention deficit hyperactivity disorder in adults is pro-
posed in Tachmazidis et al. (2021). Several methods such as support vector 
machine, Logistic regression, Decision Tree, K-Nearest neighbor, Random 
forest and, Naive Bayes were applied with out treatment of missing data. 
Therefore, this approach can skew the results. A new approach for handling 
missing data has been proposed by Ngueilbaye et al. (2021). The new frame-
work called “Module 9” proved to be efficient compared to the others in three 
known databases that have less than 1500 observations. The authors claim 
that, as a disadvantage, computational time is high due to the use of machine 
learning algorithms require a great deal of time for imputations and acquiring 
a total dataset because of the number of parameters streamlined during 
training.

Nevertheless, the focus of the majority of these contributions is on techni-
ques to input the missing values (or apply them to databases without any prior 
treatment) and not enough effort has been dedicated to analyzing the actual 
effects of missing data for regression. Here, we approached this problem by 
assigning meager importance on how close the inputted value is from the 
original one since our major aim is to observe how distinct missing data 
treatments influence the estimation outcome in different scenarios. With the 
goal of observing how incomplete data may influence regression tasks, 
a number of scenarios were investigated in situations with varying degrees of 
data loss in several publicly available databases. Six popular algorithms were 
used, namely: Decision Tree (CART), Random Forests, Adaboost and 
K-Nearest Neighbors (KNN), Multi-Layer Perceptron (MLP) and Linear 
Support Vector Machine (SVM) (Altman 1992; Breiman 2001; Breiman 
et al. 1984; Freund and Schapire 1995; Haykin 1998; Steinwart and 
Christmann 2008), respectively. Of course, the performance of estimation 
depends, among other factors, on the choice of estimators, on how keen is 
tuning of the involved parameters and on feature selection.
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Although all of these topics were approached in this contribution, our main 
objective was to carry out an exhaustive study of the effects of missing data, 
using a reasonable set of datasets using UCI and KEEL databases, which is 
a not much explored topic in the state-of-the-art. The main contributions of 
this paper are the introduction of a novel experimental framework to test the 
effect of missing data; a comparative performance analysis of the main regres-
sion models, namely Decision Tree, Random Forests, Adaboost, K-Nearest 
Neighbors (KNN), Support Vector Machines, and Neural Networks; simula-
tions showing that the effect of missing data may vary significantly depending 
on a number of factors; the conclusion that KNN tends to provide better 
results for regression on datasets with missing data. As already discussed 
analyzing the related works, in general the methods when published suppose 
an environment, in the unusual real world, of complete data. Here, we are 
mitigating how baseline methods react differently when the (larger or smaller) 
amounts of missing data are present in the studied dataset.

As a novelty, this work addresses the different results obtained via chosen 
missing data imputation methods: (1) with imputation by k nearest neighbors, 
(2) naive imputation, (3) removal of lines with missing data, (4) removal of 
columns with missing data, (5) multivariate imputation by chained equations 
(MICE), and (6) SoftImpute. This characteristic differentiates our framework 
methodology from the other techniques previously discussed. More specifi-
cally, this paper presents the following contributions:

• A new experimental framework to test the effect of missing data was 
proposed;

• A performance analysis of the main regression models, namely Decision 
Tree, Random Forests, Adaboost, K-Nearest Neighbors, Support Vector 
Machines, and Neural Networks was performed;

• The simulation showed that the effect of missing data may vary signifi-
cantly depending on a number of factors, and;

• The results concluded that KNN works better than others in the regression 
of data that has missing data.

The work is organized as follows: Section 2 describes the proposed meth-
odology to analyze the effects of missing data. Section 3 shows experiments 
results obtained. Finally, Section 4 discusses the Conclusions.

Methodology

The general experimental framework (please find a flowchart on Figure 1) is 
divided in four main steps, namely: database split, missing data simulation, 
missing data treatment and data estimation. In the first of those steps, the 
database is bisected in test and training folds. The test fold is, as usual, reserved 
for estimations in the unknown population, for inferring the out-of-sample 
performance, and thus it is not used in any steps in model construction. In 
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order to mimic the real world process of data regression, tuning of the hyper 
parameters of the regressors was necessary. Therefore, for each regressor- 
database pair, the tuning of these parameters was performed. The procedure 
consisted of a random search for the parameters’ values in an uniform 
distribution. The best values were selected using a 5-fold cross-validation on 
the training set. The second step consists in simulating missing data occur-
rence at the training folds by removing part of the data. This was done in two 
different ways, in a completely random mode and in a biased one. These folds, 
with missing values, are then used in a third step. As to guarantee an accurate 
comparison, all original databases had initially no missing data, i.e., all 
absences are due to artificial removal from step two.

Next steps, three and four, mimic the actions that would be taken when 
actually training an estimator with an incomplete database (in our experi-
ments, created in step two). The third step consists in fulfilling the databases to 
produce a filled out dataset that will be later used in step four. For each dataset 
(with missing values) six different treatments were implemented in step three 
resulting in six different completed datasets that are followed to step four. 
Besides that, different sources for missing values generators, fully random and 
biased, were emulated. In the fourth step, six different estimators were trained 
using the datasets constructed in the three previous steps. They were also 
trained with the original complete training fold (without any missing data or 
treatment) for the sake of comparison and evaluation. The detailed flowchart 
is presented in Figure 2. All experiments were run with scikit-learn python 
library version 0.18.2 Pedregosa et al. (2011).

For each of the different simulated scenarios, steps two, three and four were 
repeated 100 times and the means and its 95% confidence interval were 
reported. It is important to highlight that datasets test (out-of-sample) folds 

Figure 1. Main experiment flowchart.
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Figure 2. Main experiment detailed flowchart.
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were fixed at step one for all the simulations, in order to keep performance 
results comparable. We follow by describing the different aspects and 
a thorough explanation of each of these just defined steps.

Basic Definitions and Parameters Values

In order to settle the nomenclature, we define “feature” as being a measurable 
characteristic of an observation. Observations are entities (persons, things, 
etc.) of interest and a sample is a set of observations. Samples are subsets of 
a population to which one has never full access. Samples (data) are used to 
infer about the population.

We define two variables to simulate missingness in data, %A and %P. The 
former controls the percentage of features that will have missing information. 
It is calculated as the closest integer of the percentage of features indicated by 
%A. For instance, a database with 9 features and %A = 25% would have three 
of its features containing missing data (2:25 rounded up to 3). This variable 
allows comparisons among datasets with a different number of features. The 
latter variable controls the percentage of data removal for a specific feature. 
Hence, for a specific feature, in a database of 1000 observations(rows) and % 
P = 25%, there will be 300 rows with missing information on this feature. As 
stated for %A, if the amount of rows indicated by %P is a float, it was rounded 
to the next integer.

For all experiments in this study we treated features similarly as presented 
in Santos et al. (2019). Each feature is considered as being independent of each 
other, i.e., in a univariate manner. For a multivariate yet similar analysis, 
please refer to Schouten, Lugtig, and Vink (2018). Furthermore, the values 
of %A and %P were pre-established in simulations. The possible values for %A 
were: 5%, 10%, 25%, 50%; 75%. We also used four possible values for %P: 5%, 
10%, 25%, 50%. It is important to note that, if the value selected for %A leads 
to more than one feature having missing information, the drawn %P value will 
be the same for each feature. Finally, we assumed a general missing pattern in 
simulations Buuren (2018), which means that the set of rows with missing for 
each feature is sampled independently per feature.

We used four possible values for %P: 5%, 10%, 20%, and 50%. Six algorithms 
were used to perform regression, namely: Decision Tree (CART), K Nearest 
Neighbors, Random Forest, Adaboost, Linear Support Vector Machine (SVM) 
and Multi Layer Perceptron (MLP) Altman (1992); Breiman (2001); Breiman 
et al. (1984); Freund and Schapire (1995); Haykin (1998); Steinwart and 
Christmann (2008). These were used with the implementation of scikit-learn 
classes AdaBoostRegressor, DecisionTreeRegressor, KNeighborsRegressor, 
RandomForestRegressor, LinearSVR and MLPRegressor. Six usual methods 
were used to treat missing data (please find details about these methods in the 
sequence): Nearest Neighbor Imputation, Naïve Imputation, Multivariate 
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Imputation by Chained Equations (MICE), Soft-Imputation, Discard Rows and 
Discard Columns. We considered two possibilities concerning the nature of the 
absence of data: completely at random or in a biased way. When missing data is 
completely at random, all the observations (rows) have an equal chance of 
having missing data. In the biased missing, each row of the feature will have 
a different probability of being missing, depending on its value.

Databases
To perform the analysis, both synthetic and publicly available datasets were 
used. Synthetic databases were produced to analyze regressions performances 
after each missing data treatment in a controlled environment. The construc-
tion of the synthetic databases has followed the ensuing general procedure: 
define the number of features in the database (a) and the number of instances 
(n) and generate a matrix Mn�a where Mi;j is a random number in the interval 
½0; 1�. Analogously a matrix Nn�a, representing the noise of these values is 
generated with random numbers in the interval ½0; 0:05�.

Next, a vector of weights Wa�1 is also generated with random values in the 
interval ½0; 1�. The target value for estimation is defined as: 

Tn�1 ¼ M �W (1) 

The matrix Dn�ðaþ1Þ, which represents the synthetic database is defined as: 

Di;j ¼
Mi;j þ Ni;j; ifj � a

T;i otherwise;

�

(2) 

To ensure covering a wide variety of scenarios, 36 synthetic databases with 
4 features and 1000 instances were generated varying the Importance 
Ratios. To implement this variation, W was set to ½w; 1; 1; 1� and w was 
varied from 1:25 to 10 in steps of 0:25. The higher the value of w the more 
dependent the target result is on the first features and the greater the 
Importance Ratio.

After collecting results in synthetic data, we selected eight real-world data-
sets to test different characteristics. These characteristics comprised: a number 
of observations and features, final goal, types of data (discrete, continuous). 
Real-world databases were taken from UCI and KEEL repositories (Alcala- 
Fdez et al. 2011; Bache and Lichman 2013). An overview of each database 
information can be found in Table 1.

Six usual methods were used to treat missing data (please find details about 
these methods in the sequence): Nearest Neighbor Imputation, Naive 
Imputation, Multivariate Imputation by Chained Equations (MICE), 
SoftImputation, Discard Rows and Discard Columns. We considered two 
possibilities concerning the nature of the absence of data: completely at 
random or in a biased way. When missing is completely at random, all the 
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observations (rows) have equal chance of having a missing data. In the biased 
missing, each row of the feature will have different probability of being 
missing, depending on its value.

Database Split and Estimator Tuning

The first step of the experiment was to split the database, as usual, in two folds: 
training (in-sample) and test (out-of-sample). The training fold was submitted 
to a number of interventions to simulate the absence of data, while the test fold 
remained intact and was only used for the final out-of-sample evaluation. 
Training and Test folds were randomly separated following a proportion of 
60% for training and 40% for test.

Concerning parameters tuning, for each regressor-database pair, the user- 
defined parameters of the regressor were tuned, selecting the configuration 
with lowest scoring Mean Absolute Percentage Error (MAPE). The choice of 
using MAPE in regression over Mean Squared Error (MSE) relies on: (1) 
MAPE provides values that are more significant for decision-makers; (2) 
MAPE has a more intuitive explanation regarding relative error; (3) MAPE 
is better at evaluating robustness. Moreover, finding the best regression model 
using MAPE is equivalent to using a weighted version of Mean Absolute Error 
(MAE) (de Myttenaere et al. 2016; Shokouhyar, Ahmadi, and Ashrafzadeh 
2021). This tuning was performed based on a 5-fold cross-validation on the 
training set. As it will be further explained below, the Nearest Neighbors 
imputation method needs that at least some of the rows to be with no absent 
data. In order to guarantee this requirement the training fold is randomly split 
one more time in 10% and 90% folds. The 10%, namely “Safety Chunk”, was 
not used in the missing data simulation so that all its rows remained intact to 
fulfill the requirement. The simulation was done only with the 90% fold, 
namely Data To be Modified (DTBM). After the missing data simulation 
both 10% and 90% folds are rejoined for the remaining stages.

Missing Data Simulation

In this work, we detail how the data was removed from an originally complete 
dataset in order to generate a simulated dataset with missing values. The first 
step to emulate the absence of data was to define which features have some of 
its values artificially removed. Of course, the relevance of the features plays 
a key role. To choose the features randomly is an inadequate strategy due to 
the large variations from one sample to another that would be introduced.

On the other hand, to remove the less important ones is also not a good 
choice, since their impact on estimation would be meager and the differences 
in having missing data or not would be almost null. Accordingly, we focused 
on the more relevant features. It is important to highlight that our purpose in 
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feature selecting is directed to simulating missing values and not in trying to 
improve the performance of the estimators. There are a number of methods in 
the literature for feature selection, broad families are Wrappers and Filters 
(Kohavi and John 1997).

Here, we create an importance rank, an ordered list from the most to the 
least important. This rank is built by sequentially removing one of the features, 
and assuming that the worse the estimation without a given feature is, the 
more important is this feature. The results are sorted in descending order. The 
first features being the more important ones, since their absence produced the 
worst results. Given a database/estimator rank it is possible to calculate its 
Importance Ratio (IR), which is defined as: IR ¼ pf

pl
.

Where pf is the performance score of the data estimation without the 
most important feature and pl is the performance score for the data 
estimation without the least important feature. IR gives a simple and 
fast way to acknowledge databases that are strongly dependent on 
a small set of features. The higher the value of IR, the more dependent 
on key features the database is.

Missing data may be classified in three categories according to the assump-
tions made: Missing Completely at Random (MCAR), Missing at Random 
(MAR), Missing not at Random (MNAR)Buuren (2018); Gelman and Hill 
(2007); Howell (2007); Little and Rubin (2002); Rubin (1976); Saar- 
Tsechansky and Provost (2007); Schafer and Graham (2002). To illustrate 
each characterization, consider a toy example of a poll in which participants 
were asked their age and the number of cigarettes they smoke per day. Also 
consider that answering age is mandatory. The resulting database contains 2 
features, ’Age’ and ’Cigarettes’, in which ’Cigarettes’ may be missing and ’Age’ 
is completely observed, i.e., there are no missing values. The missingness 
characterizations are explained in what follows.

In MCAR assumption, missing data is completely unrelated to observed 
information. In the presented toy example, under MCAR the feature 
’Cigarettes’ might be missing due to unexpected events such as participants’ 
typos, the person conducting the poll made a mistake when collecting data, to 
name a few. In other words, MCAR assumes that the probability of missing 
values in a certain feature is completely random.

On the other hand, MAR assumes that missing data may be related to some 
observed information. In the presented scenario, teenagers may be less likely 
to say how many cigarettes they smoke per day because they might be afraid of 
their parents. In this assumption, missingness of the number of cigarettes is 
not related to the number of cigarettes itself. The missingness probability 
increases as the age of the participant decreases. In other words, the probability 
of having missing values may depend on one or more observed information in 
the database.
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MNAR characterization assumes that there is no randomness in missing 
data. Looking back at the toy scenario, higher values for ’Cigarettes’ may be 
missing since teenagers refuse to inform their number of cigarettes per day 
because they smoked a large quantity. Namely, missingness under MNAR may 
be dependent on both observed and missing information.

In order to analyze the effects of missing data in both purely random and 
biased scenarios, two probability functions were used to introduce missing 
values. In the first situation, each row had equal probability of being selected. 
Accordingly, the second scenario used a Gaussian function with mean and 
standard deviation equal to the feature’s mean and standard deviation of the 
original database, respectively. The bias is introduced by the fact that, the 
further the value is from mean, the lower is its probability. Moreover, the 
probability function was normalized so that the maximum probability of 
a feature to be missing is 0:95, i.e., a row of one feature will have 
a maximum probability of 0:95 of being missing when its value is equal to 
the mean of the feature.

Due to the purely random intrinsic nature of MCAR assumption, we 
chose to use it for the scenario in which missing data are randomly 
introduced. For the biased scenario, MNAR assumption was used. It is 
also important to note that, the percentage of missing data in each 
simulation is dictated by the parameter %P and it is calculated using the 
90% fold previously explained.

Figure 3 shows how distribution of the feature was transformed by data 
removal, as well as the probability function used for the biased missing. One 
can see that random missing keeps the same distribution shape whilst 

Figure 3. On the left: original histogram of the feature values before missing data simulation and 
histogram after missing data simulation. On the right: the probability function used to induce 
biased missing.
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biased missing severely alters it, introducing bias. After the simulation was 
completed the 90% fold is reunited with the 10% one (the Safety Chunk that 
did not participate on the simulation) and are headed to the next step.

Missing Data Treatment

At this point, after systematically erasing some entries in order to simulate 
missing data, we follow by dealing with the datasets, with incomplete data, in 
the same manner one would have to do in real situations. Two main options 
were used to handle this problem: simply discard the records with missing 
values, or to somehow fulfill (input) the absent data. Two techniques were 
employed for the former option and four for the latter, totaling six techniques. 
Concerning the first option, to keep the same dimensionality through all rows, 
missing values were discarded in two different ways: (1) by removing all the 
observations (rows) with missing values – we named “Discard Rows” –, (2) by 
removing any feature (column) containing missing values – we named 
“Discard Columns.” To illustrate the discard methods, let X0 be a dataset 
with 1000 observations and 10 features, %A = 25% and %P = 20%. After 
”Discard Rows” and ”Discard Columns” methods, the resulting datasets have 
800 observations with 10 features and 1000 observations with 7 features, 
respectively.

Concerning imputation, the four selected approaches were: the Naive, the 
Nearest Neighbors, Multivariate Imputation by Chained Equations (MICE) 
and SoftImpute (Mazumder, Hastie, and Tibshirani 2010; van Buuren and 
Groothuis-Oudshoorn 2011). The Naive Imputation fulfills every missing data 
related to a feature with a central tendency measure, usually the mode for 
discrete feature or the mean for continuous one.

The Nearest Neighbors Imputation consists in inputting each value based 
on its similarities with other observations recorded in the database. Let us refer 
to an observation (row) which contains missing values as vr, and let V be a set 
of vectors representing the rows on the database which have no missing values. 
Denominate Vk as a subset of V with the k nearest vectors to vr. We define as 
backbones, the subset of the features without any missing values in the whole 
training database and restrict to those the calculation of the distance to find the 
nearest vector. For instance, if a database with 5 features (numbered 1 to 5) has 
missing values in features 3 and 5, features 1, 2 and 4 would be used as 
backbones. For each feature a on vr with missing data, its value was inputted 
using the mean or the mode (for discrete values) of a in the vectors in Vk. The 
number of neighbors, k, was fixed at 20 in all runs of the experiment. The 
“Safety Chunk,” earlier explained, was necessary in order to guarantee that 
Vj j � k in all cases.
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The MICE is performed by inputting a missing value several times and 
setting its value as the mean of all the imputations. Detailing this procedure, 
start by addressing every missing value and input it with the mean of the 
correspondent feature. Next, for each feature i that has incomplete data, 
a regression is performed considering i as being dependent of the other 
features. The addressed missing values are then inputted with the result of 
this regression. This procedure is repeated for each feature with missing data 
and this regression cycle is repeated n times. Finally, the addressed missing 
values are replaced with the mean of the results of this n regressions. In the our 
experiments, n was set to 100 and the regression method utilized was Bayesian 
Interpolation MacKay (1992). SoftImpute Mazumder, Hastie, and Tibshirani 
(2010) is based on the premise that matrix Dm;n representing the database, can 
be generated by a matrix of parameters Zm;n where the rank of Z is significantly 
lower than m or n.

Therefore, a low rank approximation (Markovsky 2009) of D is performed. 
This is done by first constructing a matrix Dold in which every missing value on 
D is replaced by 0. Sequentially, a Single Value Decomposition (SVD) is 
performed on Dold. A matrix Dr is reconstructed based on this SVD, but 
using only the single values that exceeds a defined threshold δ. Dnew is 
produced by replacing D missing values with the values found in Dr. An 
error E is calculated as: 

E ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPϕ
i;j ðDold;i;j � Dnew;i;jÞ

2
q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPϕ
i;j ðDold;i;jÞ

2
q : (3) 

Where ϕ is the set of indexes where D has missing values. While E> ε, Dold 
is set to Dnew and a new Dnew is recalculated. The process is repeated until E 
converges to ε. In our experiments ε is set to 0.001 and the single values are 
selected in a way that every single value is at least 1/50 of the maximum 
single value. Hence δ ¼ 1=50 maxðSðDoldÞÞ where SðDoldÞ is the set of single 
values of Dold. These methods were chosen based on their different com-
plexities and characteristics, aiming to analyze a broad scenario. Other 
methods include, but not limited to, the Hot Deck Replacement and the 
Maximum Likelihood (Andridge and Little 2010; Schafer and Graham 
2002).

Data Estimation

Once the missing data problem is treated, the final step is estimation. Our 
procedure was firstly, to train the estimator using the original complete 
training database (with all values) and keep this for benchmarking. Then, 
the estimator was trained with databases originally containing simulated 
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missing values that were fulfilled or removed as just described. For all cases, 
the calculation begins by training of the estimator with a training database and 
estimating the out-of-sample performance in a test database. The full proce-
dure is addressed in Algorithm 2.5. Formerly the predictions are compared to 
the real values of the test database using the MAPE for the performance 
metric. In order to normalize the results and allow comparison between 
different databases the Non-improvement Ratio (NR) was calculated as fol-
lows: NR ¼ PMt

PMo
.

Where PMo and PMt are respectively the performance metrics for the 
estimator trained with the original training database and the database that 
had missing values artificially introduced. Note that higher MAPE reflects 
a poor performance, hence, concerning NR, the higher the value of NR the 
worst was the performance of PMt compared to PMo. Non-improvement 
Ratio provides an easy way to compare different databases performances 
efficiently reveling good and bad results. 

1 begin
2 Set test size, training size, %A values, %P values, nrows, ncols;
3 Split data into Xtrain and Xtest according to training and test size, 

respectively;
4 foreach regressor do
5 Apply random search of parameters using an uniform distribution and 

store the best parameters;
6 Select 10% of Xtrain randomly and store in Xsafety;
7 Xmissing  Xtrain � Xsafety;
8 foreach pair of values (%a 2 %A, %p 2 %P) do
9 n%a  %a� ncols;
10 n%p  %p� nrows;
11 Select the n%a most important columns according to the Importance 

Rank calculated;
12 Xmissing� random  randomly erase values in the n%a most important 

columns independently using Algorithm 2;
13 Xmissing� biased  use bias to erase values in the n%a most important 

columns independently using Algorithm 3;
14 Xrandom  Xmissing� random [ Xsafety;
15 Xbiased  Xmissing� biased [ Xsafety;
16 foreach missing data treatment do
17 Apply missing data treatment to Xrandom and Xbiased;
18 Train regressor on Xrandom and evaluate on Xtest;
19 Train regressor on Xbiased and evaluate on Xtest;
20 end
21 end
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22 end
23 end
Algorithm 1: Pseudo-code of the experimental procedure.

1 begin
2 Set N%A as the n%a most important columns in Xtrain according to 

Importance Rank;
3 foreach column in N%A do
4 Erase n%p values sampled according to an uniform random distribution;
5 end
6 end
Algorithm 2: Pseudo-code of random missing data generation.

1 begin
2 Set N%A as the n%a most important columns in Xtrain according to 

Importance Rank;
3 foreach column in N%A do
4 Calculate mean μ and standard deviation σ;
5 Erase n%p values sampled according to an Gaussian distribution with 

mean μ and standard deviation σ;
6 end
7 end
Algorithm 3: Pseudo-code of biased missing data generation.

Measuring Performance

To measure regression performance, we used Mean Average Percentage Error 
(MAPE): 

MAPE ¼
1
N
�
Xn

i¼1
yit � yip
�
�

�
�=yit: (4) 

Here n is the total number of data predicted, yit is the true value of the data on 
the ith test instance and yip is the predicted value of the data for such instance. 
The greater the value of MAPE the worse the prediction. Next, we detail each 
of the four steps of the main experiment.
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Results and Discussions

In this section, we present and discuss the main results of this contribution. 
Three key aspects were focused aiming at evaluating the effect of missing 
values: How data was missing (biased or completely at random); How the 
results were affected by the way databases are fulfilled and; How missing data 
impact in different regression algorithms.

The Effects of How Data Was Missing

Concerning the manner data was missing, the goal was to evaluate how 
the MCAR and the MNAR reacted under the same environment (same 
proportion of features with missing data (%A); same proportions of rows 
with missing data (%P); same treatment method and finally the same 
regression algorithm). In order to make this comparison, for each combi-
nation of these four aspects, the result of the data estimation performance 
was recorded for the database with biased missing data and for the 
database with random missing data. The performances were signaled 
with R for the random database and with B for the biased database. The 
percentage difference (PD) of B in respect to R was then calculated as: 
PD ¼ R� Bj j

R � 100. The PD was calculated for every of the four just 
described aspects. The results are shown on Table 2. The mean and 95% 
confidence interval was calculated for each group of results (e.g. when 
grouped by a database and a treatment method the interval was calculated 
using the results of such database and treatment performed under the 
different values of %A, %P and distinct estimators).

Table 2. Percentage difference means for the regression datasets (according referenced in Table 1). 
5% and 95% confidence intervals in parenthesis.

Dataset MICE Discard Neigbors Naive Soft

Rows Input

General 2.87 1.94 3.08 3.61 3.30
(0.01–22.54) (0.01–12.15) (0.01–21.54) (0.01–22.69) (0.01–21.58)

Abalone 0.22 0.55 0.27 0.67 0.31
(0.01–0.56) (0.02–3.52) (0.00–0.98) (0.00–2.46) (0.00–1.32)

Airfoil 1.34 2.89 1.69 2.46 2.61
(0.01–5.88) (0.02–20.80) (0.02–6.69) (0.01–9.45) (0.04–13.82)

Bike 1.54 1.21 3.07 2.87 1.92
(0.01–7.66) (0.03–4.48) (0.04–7.71) (0.04–12.39) (0.02–7.97)

California 1.95 1.27 1.41 1.86 1.73
(0.00–6.98) (0.01–8.40) (0.00–5.10) (00.0–7.93) (0.00–7.93)

Compactiv 2.80 3.08 11.25 11.54 12.00
(0.01–15.04) (0.01–12.23) (0.01–26.00) (0.01–26.06) (0.00–26.29)

Mortage 2.11 3.42 1.65 3.48 4.06
(0.02–5.54) (0.03–17.06) (0.02–7.58) (0.01–19.61) (0.01–25.13)

Wankara 2.20 2.12 4.57 5.38 3.01
(0.00–7.81) (0.01–12.09) (0.00–20.91) (0.01–23.92) (0.01–13.24)

Wine 0.77 0.99 0.69 0.64 0.76
(0.02–3.90) (0.02–5.68) (0.01–3.29) (0.02–3.04) (0.03–3.21)
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Table 2 shows that the mean for the PD was below 3.61% for all the 
treatment methods. Naive Imputation revealed to be the treatment method 
with higher PD values and percentiles. It becomes clear that in the majority of 
cases the difference in the quality of the regression is negligible, suggesting that 
not knowing how data is missing might not greatly effect the regression 
outcome. This looks good since oftentimes acknowledging such information 
is not possible. Which method handles imputation more uniformly is clearly 
a database-dependent information. Discard Rows performed similar in 
Compactiv database while the other imputation methods were more diverged. 
The opposite was observed with Airfoil Wankara regressions differed uniquely 
among each treatment method, while Abalone and Wine Quality results 
behaved similar throughout the different methods and missing types.

Nevertheless it becomes clear that the relative behavior of the difference 
on the estimations results is database specific, since their relative values 
considered a fixed method is almost constant. Compactiv, Wankara and 
Mortgage have the highest difference means in every method, while Wine 
Quality and Abalone have the lowest. The Discard Columns method is not 
shown in Table 1 because it does not utilize any feature with missing data 
and the bias is completely removed from the training dataset which the 
estimators are fed. Consequently PD is always 0% for such method 
showcasing absolutely no difference. We next focus on the impact of the 
way the datasets are fulfilled. Our results have shown that the best option 
on this matter significantly vary depending on: which estimator is used, 
what is the proportion of missing data, how many features have missing 
data.

Discard Rows Vs. Imputation Methods and the Amount of Features and Rows 
with Missing Data

Discarding rows has shown to be a good method of choice albeit its simplicity. 
Nevertheless, as the number of features with missing data increases, the 
performance shows a decline when compared with the imputation treatment 
methods. This behavior can be observed in the results of the experiment with 
synthetic databases showcased in Figure 4 (left). In this experiment the 
number of features with missing data was increased, however the proportion 
of missing data was maintained in every database generated. This was achieved 
by increasing the number of total features in the same proportion as the 
number of features with missing data. Moreover %P was held at a constant 
value of 20% in every experiment.

In the real-world databases it is not possible to increase the number of features 
in a database in order to keep the proportion of missing data and emulate the 
exposed synthetic experiment. Nevertheless, it is clear by Figure 4 (right) that 
every database treated with Discard Rows method has its performance seriously 
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jeopardized as the proportion of features with missing data (%A) increases. The 
Discard-Rows method shows a higher deterioration of the quality of its results 
when the number of features with missing increases. This deterioration is not so 
steep for non-discarding methods like imputation ones. Moreover as shown in 
Figure 4(left) this observation holds true even if the proportion of missing data is 
kept the same, with only the number of features being changed.

Relation between Treatments and Importance Ratio

Clearly, the most relevant features play a key role on the estimation outcome, 
however, it was not clear how the performance of the estimators were affected 
by data missing on these features. Therefore, an experiment was made in order 
to observe this behavior in not only real-world datasets but also in synthetic 
data with different Importance Ratios.

As it can be seen in Figure 5, except from the Discard Rows method all other 
methods’ performances showed some degree of dependency with the 
Importance Ratio, Discard Columns clearly being the one most affected by 
it. This is expected since the more important

a feature is for regression the worst the performance will be if we discard it. 
By projecting the results on the real databases it can be seen that Nearest 
Neighbors, Discard Rows and Discard Columns mirror previous conclusions 
almost exactly (with Nearest Neighbors showing an even higher dependency).

SoftImpute, which showed the second-highest correlation on synthetic 
databases did not translated this results on the real dataset, mainly because 
of one outlier result caused by database Bike Sharing. Naive Imputation and 
MICE showed no relationship whatsoever, which is unsurprising since their 

Figure 4. As the number of features with missing data increases, Discard rows become a worse 
choice than the imputation methods (left). As the proportion of features with missing data (%A) 
increases the outcome in data regression gets worse (right).
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synthetic correlation were among the weakest. Although a higher number of 
databases would be necessary to draw further conclusions it is clear how many 
features of the behavior found on the synthetic experiments are also seen on 
real databases.

Treatment-method Winners

In each experiment the winning treatment method for missing data is defined 
as the method which does the smallest damage in the estimation quality of the 
database when compared to the estimation of the complete and original 
database. Therefore a snapshot of the winners in each scenario was taken in 
order to observe how each treatment method is induced by the different 
variables studied. This snapshot was split in four, focusing on the number of 
times a treatment was a winner for each %A, %P, estimator and database as it 
can be seen in Figure 6.

Considering the experiment analyzed by the %P segregation there is 
little difference to be noted in the amount of winners, independently of 
how many rows have missing data. It becomes clearer that besides its 
simplicity, Discard Rows is the better choice in the majority of cases, 

Figure 5. Importance (x axis) and Non improvement (y axis) Ratios relationship.
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independently of %P. MICE, Naive and Nearest Neighbors Imputation 
follows with similar amounts. SoftImpute wins considerably less and 
Discard Columns winnings are almost skippable except when the number 
of rows with missing data is high.Shifting focus to the amount of features 
with missing data (%A) it is clear that discard methods are more prefer-
able in situations where the magnitude of %A is low. When higher 
number of features have missing data MICE and Nearest Neighbors 
imputation are preferable, nevertheless Discard Rows still win 
a considerable amount of times in every value of %A analyzed. When 
the snapshot is split by estimators more drastic behaviors are observed. 
Clearly to Discard Rows it not preferred when using Multi-Layer 
Perceptron for regression. Moreover Discard Columns only won on 
experiments ran with Nearest Neighbors and Decision Tree regressors.

Figure 6. Winner methods separated by %A, %P, databases and regressors (AdaBoost, 
DecisionTree, KNeighbors, MLP, RandonForest, SVR).
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Support Vector Machine and AdaBoost Regressors had almost none 
winners when treated with the SoftImpute method also. However, the 
most distinct scenarios are seen when the results are separated by database. 
Although being the preferred method in the majority of the cases, Discard 
Rows winning results were almost nonexistent for the Mortgage and Wine 
Quality databases. The former had an unusual amount winning for the 
nearest neighbors method. Similarly SoftImpute only showcased expressive 
results with Abalone and Airfoil databases, while Discard Columns only 
won with Mortgage and Wankara, these are among the databases with 
fewer observations but with 10 or more features, making them more 
horizontal and therefore more prone to feature removal. Therefore it is 
possible to observe that simply discarding observations with missing data 
can possibly be the better choice when it comes to regression performance, 
even with a high number of missing data. However this situation is 
mitigated when using a Neural Network and the behavior has clearly 
a database influence more than anything else.

Nearest Neighbors Vs. Naive Imputation on Tree Based Algorithms

In the Bike Sharing regression database something curious happened. The 
results for nearest neighbors imputation were way worse than for Naive 
Imputation and usually these two imputation methods perform in similar 
fashion. For this specific database, the most important features are discrete, 
hence its missing value is inputted by mode calculation.

The reason for the drastically different outcomes is because the CART 
algorithm splits the database based on one feature’s values. As Naive 
Imputation inputs all missing data in one feature with the same value 
(the mode), CART can easily split out this value, preserving an intact 
set of values that will lead to a better database split. With Nearest 
Neighbors imputation this is not possible, since each time a different 
value can be inputted, and therefore, in the split phase, the algorithm 
cannot rule-out these many values. To confirm this observation this 
behavior was reproduced using artificially generated databases as it can 
be seen in Table 3.

On every database of this kind the error for Naive imputation was way lower 
than for Nearest Neighbors imputation. This behavior was not found and 
could not be reproduced with other kinds of estimators or with decision tree 
based estimators where the affected feature was continuous. To produce the 
synthetic databases for this experiment some changes were made in the 
generation of synthetic databases from Section 2.7. We used: Wj ¼ 10; forj ¼
1; andWj ¼ 1; otherwise: In order to make the first feature discrete, after D is 
generated D1;j is set to [D1;j � 10].
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Conclusions

We showed that the effect of missing data may significantly vary 
depending on a number of factors and consequently, the choice of an 
appropriate police concerning missing data has a key impact on the 
results. It should be noticed however that the performance of the six 
tested approaches were linked with with the amount of features with 
missing data, but mainly with which estimator and which database the 
experiment was performed.

In many cases more popular and complex imputation solutions per-
formed worse than simple methods (SoftImpute rarely was the better 
option and MICE frequently lost in performance to Discard Rows). 
Moreover it was shown that under specific, but not uncommon, condi-
tions the complexity of Nearest Neighbors method can possibly not 
payoff against the simplest of methods like Naive imputation or 
Discard Columns.

The data removal methods showed to behave very differently between 
them, as expected. Discard Rows was more successful, being the method 
which performed better in most overall cases. It is noticeable, however, 
that the way features were selected in the missing data simulation (from 
the most to the least important) is a clear disadvantage for the Discard 
Columns method. Hence, in real world situations where the feature with 
missing data may not be important, Discard Columns can be a good 
and simple alternative. Concerning how data is missing, it was shown 
that although it induces serious bias in the database the fact that the 
data is missing is more hurtful than a possible introduced bias. 
Therefore, although the damage had great magnitude in some cases, 
the difference between data Missing Completely at Random (MCAR) to 
Missing not at Random (MNAR) was not significant in most cases.

Possibly the best general policy is to first infer the importance of the 
features with missing data, if they are not significant at all the Discard 
Columns method is the one that will allow no observation loss in the 

Table 3. Percentage diference means for the regression databases. 5% and 95% 
confidence intervals in parenthesis.

# instances # features MAPE (%) MAPE (%)

Neighbors (p25 – p75) Naive (p25 – p75)
1000 4 59.27 (48.61–68.77) 23.98 (21.21–25.49)
2000 4 51.26 (48.87–54.80) 15.85 (15.53–16.27)
10000 4 33.29 (32.68–33.50) 13.68 (11.87–14.47)
1000 6 65.06 (62.96–66.20) 21.83 (19.50–23.15)
2000 6 58.37 (54.68–62.70) 15.49 (14.53–16.54)
10000 6 65.13 (63.01–67.24) 14.50 (14.45–14.73)
1000 10 82.43 (71.00–92.90) 27.37 (22.48–27.68)
2000 10 71.27 (69.20–74.28) 20.00 (18.85–21.72)
10000 10 69.86 (69.49–71.00) 19.97 (14.44–24.15)
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training process and will perform fast. Nevertheless, if features which 
are missing are indeed important, Discard Rows may be a feasible 
choice depending on the amount of missing values. However if data 
generalization is poor and an imputation is required MICE or Nearest 
Neighbor will provide a greater gamut of imputation techniques, not-
withstanding that results here showed that in various cases a similar 
performance can be achieved with the simpler Naive Imputation.
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