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ABSTRACT 
 

This is a very short research work representing an homage to the regretted Professor George Isac, 
Department of Mathematics and Computer Science, Royal Military College of Canada, P.O. 17000, 
Kingston, Ontario, Canada, K7K 7B4. Professor Isac introduced the notion of “nuclear cone” in 
1981, published in 1983 and called later as “supernormal cone” since it appears stronger than the 
usual concept of “normal cone”. For the first time, we named these convex cones as “Isac’s Cones” 
in 2009 , after the acceptance on professor Isac’s part. This study is devoted to Isac’s cones, 
including significant examples, comments and several pertinent references, with the remark that 
this notion has its real place in Hausdorff locally convex spaces not in the normed linear spaces, 
having strong implications and applications in the efficiency and optimization. Isac’s cones 
represent the largest class of convex cones discovered till now in separated locally convex spaces 
ensuring the existence and important properties for the efficient points under completeness instead 
of compactness. 
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1. INTRODUCTION 
 
This is a very short research work representing 
an homage to Professor George Isac, 
Department of Mathematics and Computer 
Science, Royal Military College of Canada, P.O. 
17000, Kingston, Ontario, Canada, K7K 7B4. 
Professor Isac introduced the notion of “nuclear 
cone” in [1], published in [2] and called later on 
“supernormal cone” since it appears stronger 
than the usual concept of “normal cone”. For the 
first time, we named these convex cones as 
“Isac’c Cones” in [3], after the acceptance on 
professor Isac’s part. This study is devoted to 
Isac’s cones, including significant examples, 
comments and several pertinent references, with 
the remark that this notion is more interesting in 
the Hausdorff locally convex spaces as in the 
normed linear spaces, having strong implications 
and applications in the efficiency and the 
optimization. A generalization of Isac’s cones in 
the general Vector Spaces was given by us in 
[4]. 
 
2. ISAC'S (NUCLEAR OR SUPER-

NORMAL) CONES 
 
Throughout the research works devoted to 
nuclear (supernormal) cones professor Isac 
considered any locally convex space in the 
sense of the next definition. 
 
Definition 1. [5].  A locally convex space is any 
couple ( , ( ))X Spec X  
 
which is composed of a real linear space X and 
a family ( )Spec X of seminoms on X  
 
such that: 
 

(i)   ( ), , ( );p Spec X R p Spec Xχ χ +∈ ∀ ∈ ∈  

(ii) if ( )p Spec X∈ and q  is an arbitrary 

seminorm on X  such that q p≤ , then 

( )q Spec X∈ ; 

(iii) 1 2 1 2sup( , ) ( ), , ( )p p Spec X p p Spec X∈ ∀ ∈  

where 

1 2 1 2sup( , )( ) sup( ( ), ( )),p p x p x p x x X= ∀ ∈
 

It is well known [5] that whenever such a family 
as this ( )Spec X is given on a real vector space 

X , there exists a locally convex topology τ  on 

X  such that ( , )X τ is a topological linear space 

and a seminorm p  on X  is τ - continous iff 

( )p Spec X∈ . A  a non-empty subset Β of 

( )Spec X  is a base for it  if for every 

( )p Spec X∈ there exist 0χ >  and q∈ Β
such that p qχ≤  and ( , )X τ  is a Hausdorff 

locally convex space iff  ( )Spec X has a base Β , 
named Hausdorff base , with the property that 

{ } { }: ( ) 0,x X p x p θ∈ = ∀ ∈ Β =  where θ  is 

the null vector in X . In this research paper we 
will suppose that the space ( , )X τ sometimes 

denoted by X  is a Hausdorff locally convex 
space. Every non-empty subset K  of X
satisfying the following properties: K K K+ ⊆
and ,K K Rχ χ +⊆ ∀ ∈  is named convex cone. 

If, in addition, { }K K θ=I , then K  is called 

pointed. Clearly, any pointed convex cone K  in 
X  generates an ordering on X defined by 

( , )x y x y X≤ ∈  iff y x K− ∈ . If *X  is the 

dual of X , then the dual cone of K  is defined 

by { }* * * *: ( ) 0,K x X x x x K= ∈ ≥ ∀ ∈  and its 

corresponding polar is 0K K= − . We recall that 
a pointed convex cone ( , ( ))K X Spec X⊂  is 
normal with respect to the topology defined by 

( )Spec X  if it fulfils one of the next equivalent 
assertions:  
 

(i)  There exists at a base Ω  of 
neighborhoods for the origin θ in X such 

that ( ) ( ),V V K V K V= + ∩ − ∀ ∈Ω ; 
(ii) There exists a base Β of ( )Spec X  with 

( ) ( ), , , ,p x p y x y K x y p B≤ ∀ ∈ ≤ ∀ ∈ ; 

(iii) For any two nets { } { },i ii I i I
x y K

∈ ∈
⊂  with 

,i ix y i Iθ ≤ ≤ ∀ ∈ and lim iy θ=  it 

follows that lim ix θ= . In particular, a 

convex cone K  is normal in a normed 

linear space iff there exists 
(0, )t ∈ ∞ such that ,x y E∈ and 

y x K− ∈ implies that . 
 

It is well known that the concept of normal cone 
is the most important notion in the theory and 
applications of convex cones in topological 
ordered vector spaces. Thus, for example, for 
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every separated locally convex space
( , ( ))X Spec X and any closed normal cone

( , ( ))K X Spec X⊂  we have * * *X K K= −  

(see, for instance, [6,7]). Each pointed convex 
cone ( , ( ))K X Spec X⊂ for which there exists a 
non-empty, convex bounded set  

T X⊆ such that 0 T∉ and 
0

K T
χ

χ
≥

= U  is 

called well-based. A cone ( , ( ))K X Spec X⊂  

is well-based iff there exists a base { }i i I
B p

∈
=

     
of ( )Spec X  and a linear continuous functional  

*f K∈ such that for every ip B∈  there               

exists 0ic >  with ( ) ( ),i ic p x f x x K≤ ∀ ∈  

([6,7,1,2,8]). Clearly, every well-based cone is a 
normal cone, but, in general, the converse is not 
true, as we can see in the examples below, 
starting from the next basic notion. 
 

Definition 2. ([1,2]).  In a Hausdorff locally 
convex space ( , ( ))X Spec X  a pointed convex 

cone K X⊂  is nuclear (supernormal) with 
respect to the topolgy induced by ( )Spec X  if 

there exists a base { }i i I
B p

∈
= of ( )Spec X  such 

that for every ip B∈  there exists *
if X∈  with 

( ) ( ),i ip x f x x K≤ ∀ ∈ . 

 
Remark 1.  For the first time, we called any such 
as this cone “Isac’s cone” in [4], taking into 
account that the above definition of locally 
convex spaces is equivalent with the following: 
Let X  be a real or complex linear space and 

{ }:P p Aα α= ∈  a family of seminorms 

defined on X . For every , 0x X ε∈ >  and 
*n N∈ let  

1 2( ; , ,..., ; ) { : ( ) , 1, }nV x p p p y X p y x nαε ε α= ∈ − < ∀ = , then the family  

 

ς0 { }1 2( ) ( ; , , ..., ; ) : *, , 1, , 0}nx V x p p p n N p P nαε α ε= ∈ ∈ = >  

 
has the properties: 
 

 (V1) ,x V V∈ ∀ ∈ς0(x); 

 (V2) 1 2,V V∀ ∈ς0(x), 3V∃ ∈ς0(x) : 3 1 2V V V⊆ ∩  ; 

 (V3) V∀ ∈ ς0(x), U∃ ∈ ς0(x), U V⊆ such that ,y U W∀ ∈ ∃ ∈ ς0(y) with W V⊆ .
  
Therefore, ς0(x) is a base of neighbourhoods for x  and taking ς ( ) { :x V X U= ⊆ ∃ ∈ ς0(x) with 

U V⊆ } , the set  

 

{ :D X Dτ = ⊆ ∈ς ( )x , x D∀ ∈ }}}} { }∪ ∅  is the locally convex topology generated by the family P . 

Obviously, the usual operations which induce the structure of linear space on X are continuous with 
respect to this topology. The corresponding topological space ( , )X τ  is a Hausdorff locally convex 

space iff the family P  is sufficient, that is, ∀ 0 \ { },x X p Pαθ∈ ∃ ∈  with 0( ) 0p xα ≠ . In this 

context, a convex cone K X⊂  is an Isac’s cone iff *, : ( ) ( ),p P f X p x f x x Kα α α α∀ ∈ ∃ ∈ ≤ ∀ ∈ . 

The best, special, refined and non - trivial Isac’s cones classes associated to the sets of all normal 
cones in arbitrary Hausdorff locally convex spaces was introduced and studied in [9] as the full 
nuclear cones, these families of convex cones being defined as follows: if ( , ( ))X Spec X  is an 

arbitrary locally convex space, ( )B Spec X⊂  is a Hausdorff base of ( )Spec X  and K X⊂  is a 

normal cone, then for any mapping { }*: \ 0B Kϕ → one says that the set  
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{ }: ( ) ( )( ),K x X p x p x p Bϕ ϕ= ∈ ≤ ∀ ∈  is a 

full nuclear cone associated to K  whenever 

{ }Kϕ θ≠ . Taking into account that in any real 

normed linear space  a non-empty set 
T E⊂  is called a Bishop-Phelps cone if there 

exists *y  in the usual dual space *E  of E  and 

(0,1]α ∈  such that { }*: ( )T y E y y yα= ∈ ≤
and the applications of such as these cones in 
the Nonlinear Analysis together with the Vectorial 
Optimization induced by the vector-valued 
mappings, we conclude that, for the Haudorff 
locally convex spaces, the full nuclear cones are 
the best generalizations of the Bishop-Phelps 
cones in the normed vector spaces. 
 
In the next considerations we offer significant 
examples and adequate remarks on the 
supernormal cones. The existence of the efficient 
points and important properties of the efficient 
points sets are ensured in the separated locally 
convex spaces ordered by the (weak) 
supernormal cones named by us “Isac’s cones”, 
through the agency of the (weak) completeness 
instead of the compactness (the reader is 
referred to [7,1,2,8,10,11,12,13,9,14,15,16,17, 
18,19,20,21,22,23,24,3,4,25,26] and so on).  
 
Theorem 1. [27].  A convex and normal cone K in 
a Hausdorff locally convex space is supernormal 
if and only if every net of K weakly convergent to 
zero converges to zero in the locally convex 
topology. 
 
Let us consider some pertinent examples 
 

1.  Any convex, closed and pointed cone in        
an arbitrary usual Euclidean space              

Rk( *k N∈ ) is supernormal. 
2.  In every locally convex space any well-

based convex cone is an Isac’s cone. 
3. A convex cone is an Isac’s cone in a 

normed linear space if and only if it is well-
based. 

4.  Let n∈N* be arbitrary fixed and let Y be 
the space of all real symmetric (n, n) 
matrices ordered by the pointed, convex 
cone C = {A∈Y:xT Ax 0, }.nx R≥ ∀ ∈  Then, 
Y is a real Hilbert space with respect to the 
scalar product defined by <A, B> =trace (A. 
B) for all A, B∈Y and C is well-based by  
B={A∈  C :<A, I>=1} where I denotes the 
identity matrix. 

5.  Every pointed, locally or weakly compact 
convex cone in any Hausdorff locally 
convex space is an Isac’s cone. 

6. A convex cone is an Isac’s cone in any 
nuclear space [28] if and only if it is a 
normal cone.  

7. In any Hausdorff locally convex space a 
convex cone is an weakly Isac’s cone if 
and only if it is weakly normal. 

8. In Lp([a, b]),  the convex cone Kp={x∈
Lp([a, b]):x(t) ≥ 0 almost everywhere} is an 
Isac’s cone if and only if p=1, being well 
based in this case by the set B={x∈ K1:

( )b

a
x t dt =∫ 1}. Indeed, if p>1, then the 

sequence (xn) defined by 
 

( )
1

p

n
n ,  a t a+(b-a)/2nx t     n
0, a+(b-a)/2n<t b

 ≤ ≤= ∈
≤

N

 
 
converges to 0 in the weak topology but not in its 
usual norm topology. Therefore, by virtue of the 
Theorem 1, Kp is not an Isac's cone. Generally, 
for every p>1, Kp has a base B={x ∈ Kp:

( )b

a
x t dt =∫ 1} which is unbounded. Any convex 

cone generated by every closed and bounded 

set Bt={x∈B: ( )b p

a
x t dt t}≤∫ with t≥0 is certainly 

an Isac’s cone. A similar result holds for Lp(R). 
Thus, if we consider a countable family (An) of 

disjoint sets which covers R such that  (An) = 

1 for all n in N, where  is the Lebesgue 
measure, then the sequence (yn) given by yn(t) = 

1 if t∈An and yn(t) = 0 for converges 
weakly to zero while it is not convergent to zero 
in the norm topology. Taking into account the 
above Theorem 1, it follows that the usual 
positive cone in Lp(R) is not an Isac’s cone if p>1, 
that is, it is not well-based in all these cases. 

However, these cones are normal for every p ≥. 
The same conclusion concerning the non-
supernormality is valid for the positive orthant of 
any usual Orlicz space. 

 
9.  In  l p (p≥1)  equipped with the usual norm 

⋅ p  the positive cone  

 

is also normal 
with respect to its usual norm topology, but it is 
not an Isac’s cone excepting the case p = 1. 
Indeed, for every p>1, the sequence (en) having 
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1 at the nth coordinate and zeros elsewhere 
converges to zero in the weak topology, but not 
in the norm topology and by virtue of Theorem 1 
it follows that Cp is not an Isac’s cone. For p = 1, 

Cp is well-based by the set B = and 
Proposition 5 given in [2] ensures that it is an 
Isac’s cone.  If we consider in this case the 
locally convex topology in l1 defined by the 

seminorms pn((xk)) = x k
k

n

=
∑

0

 for every (xk) in l1 

and n∈N, which is weaker than its usual weak 
topology, then the usual positive cone remains 
an Isac’s cone  with respect to this topology (now 
it is normal in a nuclear space and one applies 
Proposition 6 of [2]), but it is not well based. 
Taking into account the concept of H-locally 
convex space introduced in [29] and defined as 
any Hausdorff locally convex space with the 
seminorms satisfying the parallelogram law and 
the property that every nuclear space is also a H-
locally convex space with respect to an 
equivalent system of seminorms [28], the above 
example shows that, in a H-locally convex space, 
a proper convex cone may be an Isac's cone 
without to be well-based. Moreover, if we 
consider in l2 the H-locally convex topology 
induced by the seminorms 

 

( )
1

2
2 2

n k i k
i n

p ((x )) x ,  n N, x ,
≥

 = ∈ ∈ 
 
∑% l

 
 

then, the convex cone for 
all k∈N} is normal in the H-locally convex space 
(l2,{ n n Np } ∈% ), but it is not a supernormal cone 
because the same sequence (ek) is weakly 
convergent to zero while ( knp (e ) ) is convergent 

to 1 for each and one applies again the 
Theorem1. Another interesting example of 
normal cone in a H-locally convex space which is 
not supernormal is the usual positive cone in the 
space L2 loc (R) of all functions from R to C which 
are square integrable over any nontrivial, finite 
interval of R, endowed with the system of the 
seminorms 

{ } ( ) ( )
1

n 2 2

n n n
p : n N  defined by p x x t dt

−

 
∈ =  

 
∫  for 

every x in L2
loc (R). In this case, the sequence 

(xk) given by: 
 

( ) ( )
[ ]k

0,  t - , 0 1 k ,  +
x (t)

k ,  t 0, 1 k

 ∈ ∞ ∪ ∞= 
∈  

converges weakly to zero, but it is not 
convergent to zero in the H-locally convex 
topology. The results follows by Theorem 1. It is 
clear that every weak topology is a H-locally 
convex topology and, in all these cases, the 
supernormality of the convex cones coincides 
with the normality thanks to the Corollary of the 
Proposition 2 given in [2].  

 
10.  In the space C([a, b]) of all continuous, real 

valued functions defined on every non-
trivial, compact interval [a, b] equipped with 
the usual supremum norm the convex 
cone K = {x∈C([a, b]): x is concave, x(a)=x 
(b) = 0 and x(t)≥0 for all t∈[a, b]} is 
supernormal, being well based by the set 
{x∈K: x(t0) =1} for some arbitrary t0∈[a,b]. 
The hypothesis that all x∈K are concave is 
essential for the supernormality. 

11. The convex cone of all nonnegative 
sequences in the space of all absolutely 
convergent sequences is the dual of the 
usual positive cone in the space of all 
convergent sequences. Consequently, it 
has a weak star compact base and, hence, 
it is a weak star supernormal cone.  

12. In l∞ or in c0 equipped with the supremum 
norm, the convex cone consisting of all 
sequences having all partial sums non-
negative is not normal, so it is not 
supernormal. 

13. In every Hausdorff locally convex space 
any normal cone is supernormal with 
respect to the weak topology. 

14. In every locally convex lattice which is a 
(L)-space the ordering cone is supernormal 
(see also the Example 7 given in [11]). 

15. If we consider the space of all locally 
integrable functions on a locally compact 
space Y with respect to a Radon measure 
µ endowed with the topology induced by 
the family of seminorms {pA} where pA(f) = 

( )
A

f x dµ∫  for every non-empty and 

compact subset A of Y and every locally 
integrable function f, then the convex cone 
K = {f: f(x)≥0, x∈Y} is supernormal. 

16. If Z is any locally convex lattice ordered by 
an arbitrary convex cone K and Z* is its 
topological dual ordered by the 
corresponding dual cone K*, then the cone 
K is supernormal with respect to the locally 
convex topology defined on Z by the 
neighbourhood base at the origin {[-f, 
f]°} f∈Κ

∗. 
17. In every regular vector space (E, K) (that 

is, the order dual E* separates the points of 
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E) with the property that E = K - K the 
convex cone K is an Isac’s cone with 
respect to the topology defined in the 
preceding example.  

18. Any semicomplete cone in a Hausdorff 
locally convex space is supernormal (for 
this concept see the Example 11 of [11]). 

 
Remark 2.  Clearly, if a convex cone K is 
supernormal in a normed space, then K admits a 
strictly positive, linear and continuous functional, 
that is, there exists a linear, continuous functional 

f such that f(k)>0 for all Generally, the 
converse is not true, even in a Banach space, as 
we can see in the following examples. 
 

19. If one considers in the usual space lp 

( )1 p≤ ≤ ∞  the usual ordering convex 

cone  
K { }p p

i ix (x ) : x 0 for every i N+= = = ∈ ≥ ∈l l of 

all the infinite vectors with non-negative 
components, then the functional ϕ defined 

by i
i 1

(k) k
∞

=
ϕ =∑  for any k =(ki)∈ lp  is linear, 

continuous and strictly positive. But, as              
we have seen in the above considerations  
(Example 9), this cone is supernormal if 
and only if  p = 1. 

20. Let K be the usual positive cone Lp
+ = 

{x∈Lp([a, b]):x(t)≥0 almost everywhere} in 
Lp([a, b]) (1≤p≤∞). Then, the linear and 
continuous functional ψ on Lp([a, b]) given 

by 
b

a
(x) x(t)dtψ = ∫  for every x∈Lp([a, b]) is 

strictly positive on K while K is 
supernormal (see the above Example 8) if 
and only if p = 1. The same conclusion is 
valid for the space L

p
(R) (1≤p≤∞). 

Therefore, l1+ and L1
+ are Isac’s cones, 

with empty topological interiors, and for 

every it follows that l p
+ and L p

+ 
are normal cones with empty interiors, 
which are not supernormal. Hence, these 
convex cones are not well based. Very 
simple examples of Isac’s cones having 
non-empty topological interiors are R+

n 
(n∈N*).  

 
Remark 3. In the order complete vector lattice 
B([a, b]) of all bounded, real valued functions on 
a compact non-singleton interval [a, b] endowed 
with its usual norm the standard positive cone   

is normal but 

it has not a base, that is, it is not supernormal. 
However, this cone has non-empty interior. If we 
consider the linear space l1 endowed with the 
separated locally convex topology generated by 

the family of seminorms defined by 
n

n k
k 0

p (x) x
=

=∑ for every then the 

convex cone whenever 

is supernormal, but it is not well based. 
 
Remark 4. The natural context of supernormality 
(nuclearity) for convex cones is any separated 
locally convex space. Isac, G. introduced the 
concept of “nuclear cone” in 1981, published it in 
1983 and he showed that in a normed space a 
convex cone is nuclear if and only if it is well 
based or equivalently iff it is “with plastering”, the 
last concept being defined by Krasnoselski, M. A. 
in fifties (see, for example, Krasnoselski, M. A., 
1964 and so on) [30]. Such a convex cone was 
initially called “nuclear cone” by Isac, G. (1981) 
because in every nuclear space (Pietch, A., 
1972) any normal cone is a nuclear cone in 
Isac’s sense (Proposition 6 of Isac, G., 1983). 
Afterwards, since the nuclear cone introduced by 
Isac appears as a reinforcement of the normal 
cone, it was called supernormal. The class of 
supernormal cones in Hausdorff locally convex 
spaces was initially imposed by the theory and 
the applications of the efficient (Pareto minimum 
type) points (especially existence conditions 
based on completeness instead of compactness 
were decisive together with the main properties 
of the efficient points sets), the study of critical 
points for dynamical systems and conical support 
points and their importance was very well 
illustrated by important results, examples and 
comments in the specified references and in 
other connected papers. It is also very significant 
to mention again that the concept of 
supernormality introduced by Isac, G. (1981) is 
not a simple generalization of the corresponding 
notion defined in normed linear spaces by 
Krasnoselski, M. A. and his colleagues in the 
fifties. Thus, for example, Isac's supernormality 
attached to the convex cones has his sense in 
every Hausdorff locally convex space identically 
with the well known Grothendieck's nuclearity. By 
analogy with the fact that a normed space is 
nuclear in Grothendieck’s sense if and only if it is 
isomorphe with an usual Euclidean space, a 
convex cone is supernormal in a normed space if 
and only if it is well based, that is, it is generated 
by a convex bounded set which does not contain 
the origin in its closure. Beside Pareto type 
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optimization, we also mention Isac’s significant 
contributions, through the agency of supernormal 
cones, to the convex cones in product linear 
spaces and Ekeland’s variational type principles 
(Isac.G., 2003; Isac, G., Tammer, Chr., 2003). 
Therefore, the more appropriate background for 
Isac’s cones is any separated locally convex 
space. 

 
3. CONCLUSIONS AND FUTURE 

RESEARCH DIRECTIONS 
 
The family of Isac’s cones represents the largest 
class of ordering cones in Hausdorff locally 
convex spaces ensuring the existence and the 
adequate properties for the efficient points sets 
involved in the general optimization, following 
different completeness types instead of 
compactness. Consequently, one of the main 
goal of the next research is to identify new 
applications of Isac’s cones in the efficiency 
projected in the best approximation problems, 
the set - valuet fixed point theory including the 
dynamical systems and the nuclearity of the 
linear vector spaces.   
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