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Abstract 
This paper examines the computational modelling of cholera bacteriophage with treatment. A 
nonlinear mathematical model for cholera bacteriophage and treatment is formulated and ana-
lysed. The effective reproduction number of the nonlinear model system is calculated by next 
generation operator method. By using the next generation matrix approach, the disease-free equi-
librium is found to be locally stable at threshold parameter less than unity and unstable at thresh-
old parameter greater than unity. Globally, the disease free equilibrium point is not stable due to 
existence of forward bifurcation at threshold parameter equal to unity. Stability analysis and nu-
merical simulations suggest that the combination of bacteriophage and treatment may contribute 
to lessening the severity of cholera epidemics by reducing the number of Vibrio cholerae in the en-
vironment. Hence with the presence of bacteriophage virus and treatment, cholera is self-limiting 
in nature. 
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1. Introduction 
A highly pathogenic gram-negative bacterium Vibrio cholerae is the causative agent of the water-born diarrheal 
disease; cholera [1]. The sensitive diarrheal infection is caused by ingestion of food or water contaminated with 
the bacterium Vibrio cholerae. The most common symptoms of cholera include severe watery diarrhea, vomit-
ing, excessive thirst, loss of skin elasticity and muscle cramps [2]. The most important treatment is to replace the 
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fluids and electrolytes that have been lost due to diarrhea [3]. This is done either through oral fluid rehydration 
or, in severe cases, intravenous fluid rehydration. 

Treatment of cholera with massive doses of bacteriophage is not as effective as treatment with tetracycline. 
However, bacteriophage can selectively eliminate the majority of Vibrios without affecting the other intestinal 
flora toxic effect on the patient. 

Bacteriophage might be useful as a research tool [4] [5] developed a model which accounted for the role 
played by Hiperinfectivity Vibrios in causing the cholera epidemic. A mathematical model by [6] was analysed 
to study the dynamics of cholera in terms of interaction between Vibrio cholerae and bacteriophage model.. 
However, in all the above studies, none of them incorporated the treatment. In this paper, it is therefore intended 
to analyse a model which incorporates the treatment. We thus study and analyse a nonlinear mathematical model 
of the cholera bacteriophage and treatment. The model incorporates the assumption that there is natural death of 
human, Vibrio cholerae and bacteriophage at the rates of 1 2,µ µ  and 3µ . 

2. Model Formulation 
A nonlinear mathematical model is proposed and analysed to study the impact of bacteriophage and treatment in 
the environment while the cholera epidemic is in progress. The proposed mathematical model divides the human 
population, ( )N t  into four classes at time t, namely; the susceptible population ( )S t , infected population
( )I t , the treated population ( )T t , and the recovery population ( )R t . The aquatic population of bacteria 
( )V t , denotes the concentration of toxigenic Vibrio cholerae in water, and ( )P t , represent the phage density 

at any time t.  
A Susceptible, Infective, Treatment, Recovery and Susceptible (SITRS) model is developed to study the role 

of bacteriophage and treatment in the environment during the cholera outbreaks. The SITRS model indicates 
that the passage of individual is from the susceptible class ( )S t , Infective class ( )I t , treatment class ( )T t , 
recovery class ( )R t  and then becomes susceptible again. In this model, it is assumed that the susceptible peo-
ple are recruited in the population at a constant immigration rate a. 

In formulating the model, the following assumptions are taken in consideration: 
1) The population varies. 
2) There is natural death of human, Vibrio cholerae and bacteriophage at the rates of 1µ  2µ  and 3µ . 
3) The disease is fatal. 
4) The rate of transmission is directly proportional to the susceptible population and also to the ratio between 

the members of infected population to the environment. 
5) The population is homogeneously mixed and each susceptible individual has equal chance of acquiring chol-

era. 
However, the model also assumes that the infected individual can recover at the rate of τ  and some suscep-

tible individuals acquire cholera infection following contacts with the pathogenic Vibrio cholerae at the rate of  

λ  given by V
V

αλ
κ

=
+

 where α  is the rate of contact to contaminated water per unity time, κ  is the con-

centration of Vibrio cholerae in water that yields 50% chance of spreading cholera, and ( ) VD V
Vκ

=
+

 is the  

probability that an individual in contact with untreated water with pathogenic Vibrios is infected with Vibrio 
cholerae. 

Taking into account the above considerations and assumptions then we have the following schematic flow 
diagram (Figure 1): 

The model is thus governed by the following system of nonlinear ordinary differential equations: 

1
d ,
d
S VSa R S
t V

α φ µ
κ

= − + −
+

 

( )1
d ,
d
I VS I
t V

α τ ε µ σ
κ

= − + + +
+

 

2
d ,
d
V g I V V
t

δ µ γ= + − −  
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Figure 1. A compartment model for Cholera Bacteriophage 
with treatment [6].                                      

 

3
d ,
d
P V P
t

γ µ= −                                      (1) 

( )1
d ,
d
T I T
t

σ µ η= − +  

( )1
d ,
d
R T R I
t

η µ φ τ= − + +  

where 

( ) ( ) ( ) ( ) ( ) ( )0 0, 0 0, 0 0, 0 0, 0 0, 0 0.S I T R T P≥ ≥ ≥ ≥ ≥ ≥  

The total population of human at time t is given by 

( ) ( ) ( ) ( )HN S t I t T t R t= + + +  

Thus it follows that 
d d d d d

d d d d d
HN S I T R
t t t t t

= + + + . 

This implies that 

( )

( ) ( )
1 1

1 1

d
d

HN VS VSa S R I
t V V

I T T R I

α αµ φ τ ε µ σ
κ κ

σ µ η η µ φ τ

= − − + + − + + +
+ +

+ − + + − + +
 

This reduces to 

1
d

d
H

H
N a N I

t
µ ε= − −                                      (2) 

It follows that from equation (2), that in the absence of the disease i.e. 0ε = , the rate of change of human 
population size is given by 

1
d

.
d

H
H

N a N
t

µ= −  

3. Model Analysis 
The model system of Equations (1) will be analysed qualitatively to get insight into its dynamical features which 

V

S Ι
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V
Vκ +
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will give a better understanding of the effects of bacteriophage and treatment while cholera epidemic persist in a 
given population. The effective reproductive number eR  which governs elimination or persistence of cholera 
will be determined and studied. 

3.1. Disease Free Equilibrium (DFE) 
The disease free equilibrium of the model system of equations (1) is obtained by setting 

d d d d d d 0
d d d d d d
S I T R V P
t t t t t t
= = = = = =  

At disease-free equilibrium, we have 0, 0, 0, 0, 0, 0.I T V R P g= = = = = =  consequently we get 

1

aS
µ

= . 

Therefore the disease free equilibrium (DFE) denoted by 0E  of the cholera bacteriophage and treatment 
model system (1) is given by 

( )0
1

,0,0,0,0,0 ,0,0,0,0,0aE S
µ

 
= =  

 
                               (3) 

3.2. The Effective Reproduction Number, “R”  
The effective reproduction number, eR  of the nonlinear model system (1) was obtained by using the next gen-
eration operator method and is given by 

( )( )1 1 2
e

aR αδ
κµ τ ε µ σ µ γ

=
+ + + +

                                (4) 

3.3. Local Stability of Disease Free Equilibrium Point 
The disease-free equilibrium of the nonlinear model system (1) is given by 

( )0
1

,0,0,0,0,0 ,0,0,0,0,0aE S
µ

 
= =  

 
 

Theorem 1 
The local stability of the disease-free equilibrium of the cholera Bacteriophage and treatment model system (1) 

is locally asymptotically stable if 1eR <  and unstable if 1eR > . 
This is shown by computing the Jacobian matrix of the model (1). The Jacobian matrix is computed by dif-

ferentiating each equation in the system with respect to the state variables , , , , ,S I V P T R . 
It follows that 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1 1 1 1 1
0 0 0 0 0 0

2 2 2 2 2 2
0 0 0 0 0 0

3 3 3 3 3 3
0 0 0 0 0 0

4 4 4 4 4 4
0 0 0 0 0 0

5 5 5 5
0 0 0 0

f f f f f fE E E E E E
S I V P T R
f f f f f fE E E E E E
S I V P T R
f f f f f f

E E E E E E
S I V P T R
f f f f f fE E E E E E
S I V P T R
f f f f f

E E E E
S I V P

∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂=
∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

J

( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

5 5
0 0

6 6 6 6 6 6
0 0 0 0 0 0

f
E E

T R
f f f f f f

E E E E E E
S I V P T R

 
 
 
 
 
 
 
 
 
 
 
 ∂ 
 ∂ ∂
 ∂ ∂ ∂ ∂ ∂ ∂
 
∂ ∂ ∂ ∂ ∂ ∂ 
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This gives 

( )

( )

( )
( )

0

2
1

1
1

2

3

1

1

0 0

0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0

0

E

a

a

αµ φ
µ
ατ ε σ µ

µ
δ γ µ

γ µ
σ η µ

η φ

κ

κ

τ µ

 
 
 
 
 
 =  
 
 
 
 
 

− −

− + + +

− +
−

−



+
− +

J              (5) 

The characteristic equation corresponding to 
0EJ  is 

( )( )( ) ( )( )( )( )1 1 1 1 1 2 3

1

0
aη λ µ λ φ µ λ µ αδ κµ τ ε λ σ µ γ λ µ λ µ

κµ

 − − − − − − + − − + + + + − − − − −
− = 
  

   (6) 

It follows that 

1 1λ µ= −  

( ) ( )( )2
1 1 2 1 1 1 2

2
1

4

2

aκµ τ γ σ µ µ κµ αδ κµ τ γ σ µ µ
λ

κµ

 + + + + + − + − + + + − 
= −  

 
 

 
 

when ( )( )2
1 1 1 24aκµ αδ κµ τ γ σ µ µ+ − + + + −  is not a real number, 

( ) ( )( )2
1 1 2 1 1 1 2

3
1

4

2

aκµ τ γ σ µ µ κµ αδ κµ τ γ σ µ µ
λ

κµ

 − + + + + + + + − + + + − 
= −  

 
 

 
 

when ( )1 1 2 0κµ τ γ σ µ µ+ + + + + <  and ( )( )2
1 1 1 24aκµ αδ κµ τ γ σ µ µ− + − + + + −  is not a real number. 

Other eigenvalues are 

( ) ( )
4 3

5 1 6 1

,
,

λ µ
λ η µ λ φ µ

= −

= − + = − +
. 

Since all Eigen values of the characteristic equation have negative real parts then the disease-free equilibrium 
0E  is locally asymptotically stable. 

3.4. Global Stability of Disease Free Equilibrium E0 
Theorem 2 
The disease-free equilibrium point 0E  is globally asymptotically stable if 1eR <  when all solutions of sys-

tem (1) which starts in 6R+  are bounded. 
Proof 
From system (1) we have 

( ) 1

d
0d

d
0 0

d

I a S
I It V

V V V
t

α α
κµκ

     −    +  = − −              

F V                          (7) 
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where the matrices F  and V  are given by 1

0

0 0

aα
κµ

 
 =  
  

F  and ( )1

2

0
.

τ ε µ σ
δ µ γ

+ + + 
=  − + 

V  

Since 
1

a S
V

κ
µ κ

>
+

 0t ≥∀  in 6R+ , then 

( )

d
d
d
d

I
It

V V
t

 
   
  ≤ −  
    
 

F V                               (8) 

Using the fact that the eigenvalues of the matrix ( )−F V  all have negative real parts it follows that the lin-
earized differential inequality system (1) is stable whenever 1eR <  [7]. Consequently, ( ) ( ) ( ), 0,0I t V t →  as
t →∞ . It follows by comparison theorem [8] that ( ) ( ) ( ), 0,0I t V t → . Substituting 0I V R= = =  in the first  

and fourth equations of the model system (1), we obtain ( ) aS t
µ1

→  and ( ) 0P t →  as t →∞ . Thus

( ) ( ) ( ) ( ) ( ) ( )
1

, , , , , ,0,0,0,0,0aS t I t V t P t R t T t
µ

 
→  

 
 as t →∞  if 1eR < , and subsequently 0E  is globally 

asymptotically stable if 1eR < . 

3.5. The Endemic Equilibrium point (EEP) and Local Stability 
The endemic equilibrium of the nonlinear model system (1) is given by 

( )* * * * * * *, , , , ,E S I V P T R . It is obtained by setting the right hand side of each equation of the nonlinear model 
system (1) equal to zero for 1eR > . * * * * *, , , ,S I V P T  and *R  satisfies the following relations: 

( )( )

*

1 1*
1

1

1

S a
ησφτ

η µ φ µ
µ λ

τ δ σ µ

=
 + + + + −

+ + + 
 
 

 

( )( ) ( )( )

*
*

1 1*
1 1

1

1

aI λ
ησφ

η µ φ µ
ε µ σ µ λ

ε µ σ

τ
τ

τ

=
 + + + + + + + −

+ + + 
  

 

( )( )( ) ( )( )

*
*

1 1*
2 1 1

1

1

aV λ δ
ησφ

η µ φ µ
τ

τµ γ
τ

ε µ σ µ λ
ε µ σ

=
 + + + + + + + + −

+ + + 
  

 

( )( ) ( )( )
( )

*
*

1 1*
3 1 2 1

1

1

aP γλ δ
ησφ

η µ φ µ
µ ε µ σ µ γ µ λ

ετ σ µ

τ
τ

=
  +  + + + + + + + −
 + + +
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( )( ) ( )( )
( )

*
*

1 1*
1 1 1

1

1

aT σλ
ησφ

η µ φ µ
µ η ε µ σ µ λ

ε σ µ

τ
τ

τ

=
  +  + +  + + + + + −
 + + + 
  

  

 

( )( )( ) ( )( )
( )

*
*

1 1*
1 1 1 1

1

1

aR ησλ
ησφ

η µ φ µ
µ φ µ η ε µ σ µ λ

ε σ

τ
τ

τ µ

=
  +  + +  + + + + + + −
 + + + 
  

  

 

*λ  is the solution of the following quadratic polynomial 

( )2* * 0A B Cλ λ+ + =                                    (9) 

where 
0C =  

( )( ) ( )( ) ( )( )1 1 2 1
1 1

A φησµ φ µ η κ µ γ ε µ σ
µ φ µ η

τ τ
 

= + + + + + + − + 
+ +  

 

( )( )( ) ( )( )1 1 1 1 2 1B aµ φ µ η ε µ σ αδ κµ µ γ ετ στ µ= + + + + + − + + + +    

From Equation (9) it follows that 

( )* * 0A Bλ λ + = , 

implying that 
*
1 0.λ =  

which corresponds to the disease free equilibrium. 

* .B
A

λ = −  

This gives 

( )( )( ) ( )( )

( )( ) ( )( ) ( )( )

1 1 1 1 2 1*

1 1 2 1
1 1

.
aµ φ µ η ε µ σ αδ κµ µ γ ε µ σ

λ
φησµ φ µ η κ µ γ ε µ σ

µ φ η

τ

µ

τ

τ τ

+ + + + + − + + + +  = −
 

+ + + + + + − + + + 

 

It follows that 

( )( )( )[ ]

( )( ) ( )( ) ( )( )

1 1 1*

1 1 2 1
1 1

1
.eRµ φ µ η ε µ σ

λ
φησµ φ µ η κ µ

τ

τγ ε µ σ
µ µ η

τ
φ

+ + + + + −
= −

 
+ + + + + + − + + + 

            (10) 

where 

( )( )1 1 2

.e
aR αδ

κµ ε µ σ µ γτ
=

+ + + +
 

Corresponding to unique endemic equilibrium *E  where 1eR > , 0B <  and 0A < . From this result we 
state the following theorem which will be proved by using bifurcation diagram and centre manifold theorem. 

Theorem 3 
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The unique endemic equilibrium *E  exists if 0A > , 0B <  and 1eR > , and is locally stable if 1eR > , 
and unstable if 1eR < . 

Determination of Forward or Backward Bifurcation 
From Equation (9), it follows that there is no backward bifurcation since the value of 0C = , hence no multiple 
equilibria. Therefore existence of unique endemic equilibrium which is locally stable for eR >1  and unstable if 

1eR <  was explored by a forward bifurcation diagram obtained when a graph of proportion infective population 
“ I ” against effective reproduction number “ eR ” is drawn as shown below. 

Figure 2 reveal a forward bifurcation when 

1 2 3

5, 100000, 1, 0.2,
0.015, 1, 5, 0.000000001,
0.95, 0.04, 0.14,
0.0000548, 2, 0.000001

a k r
g

α
ε δ γ
η φ σ
µ µ µ

= = = =
= = = =
= = =
= = =

 

From Figure 2, the two equilibrium points exchange stability depending on the value of eR . A transcriti-
cal/forward bifurcation in the equilibrium points occur at 1eR = . If 1eR < , no biologically meaningful endemic 
equilibrium solution exists and the disease free equilibrium is the only local attractor. But if 1eR > , the endemic 
equilibrium exists and is the only local attractor while the disease free equilibrium is a saddle point. 

The local asymptotic stability of endemic equilibrium will be analysed by using the Centre Manifold theory [9] 
and it is shown that it is stable under certain conditions. The nonlinear model system (1) shows that it will ex-
hibit a backward bifurcation which occurs at 1eR =  under certain conditions otherwise it will exhibit a forward 
bifurcation at 1eR =  as shown in Figure 2 and is locally stable. 

3.6. Global Stability of the Endemic Equilibrium Point (EEP) 
Theorem 4 
If 1eR > , the endemic equilibrium *E  of the non-linear model (1) is globally asymptotically stable [10]. 
Proof: 
To establish the global stability of the endemic equilibrium *E  we construct the following positive 

Lyapunov function L as follows; 
 

 
Figure 2. The figure of proportion infective population “ I ” against effective 
reproduction number “ eR ”.  
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( )
* *

* * * * * * * * * *

* *
* * * *

* *
* * * *

, , , , , log log

log log

log log

S IL S I V P T R S S S I I I
S I

V PV V V P P P
V P

T RT T T R R R
T R

   
= − − + − −   
   
   

+ − − + − −   
   
   

+ − − + − −   
   

             (11) 

Direct calculation of the derivative of L along the solutions of (1) gives 
* *

* *

d d d
d d d

d
d

L S S S I I I
t S t I t

V V V P P
V t P

   − −
= +   
   
   − −

+ +   
   

 

* *d d d
d d d
P T T T R R R
t T t R t

   − −
+ +   
   

                           (12) 

But 

1
d ,
d
S VSa S R
t V

α µ φ
κ

= − − +
+

 

2
d ,
d
V g I V V
t

δ µ γ= + − −  

3
d ,
d
P V P
t

γ µ= −  

( )1
d ,
d
T I T
t

σ µ η= − +  

( )1
d ,
d
R T R I
t

η µ φ τ= − + +  

This implies that 

( )

( )( )

( )

( )

( )( )

( )( )

*

1

*

1

*

2

*

3

*

1

*

1

d
d
L S S a S S R
t S

I I S I
I

V V g I V V
V

P P V P
P

T T I T
T

R R T R I
R

λ µ φ

λ ε µ σ

δ µ γ

γ µ

σ µ η

η µ

τ

τφ

 −
= − − + 
 
 −

+ − + + + 
 
 −

+ + − − 
 
 −

+ − 
 
 −

+ − + 
 
 −

+ − + + 
 

 

Substitute 
*S S S= − , *I I I= − , *V V V= − , *P P P= − , *T T T= −  and *R R R= −  

Therefore 
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( ) ( ) ( )( )

( ) ( )( )( )

( )( ) ( )

( ) ( )( )

( ) ( )( )( )

( ) ( )( ) ( )( )

*
* * *

1

*
* *

1

*
* *

2

*
* *

3

*
* *

1

*
* * *

1

d
d
L S S a S S S S R R
t S

I I S S I I
I

V V V V g I I
V

P P V V P P
P

T T I I T T
T

R R T T R R I I
R

λ µ φ

λ ε µ σ

µ

τ

τ

γ δ

γ µ

σ µ η

η µ φ

 −
= − − − − + − 
 
 −

+ − − + + + − 
 
 −

+ − − + + − 
 
 −

+ − − − 
 
 −

+ − − + − 
 
 −

+ − − + − + − 
 

 

which gives 

( )
( )

( ) ( ) ( )( )

( ) ( )
( )

( )
( )

( )( ) ( )( )

( ) ( )( ) ( )( )

( )( ) ( )( ) ( )

2* * * * *

1

2**
*

1

2* * * * *

2

2 2* * * *
3 2

2* * * *
1

d
d

S S a S S S S R R S SL
t S S I S

I II I S S
I I

V V V V I I P P V V

V V P

P P T T I I T T

P T T

R R T T R R I I

R R R

φ
λ µ

λ ε µ σ

δ γ
µ γ

µ σ µ η

η τµ φ

τ

− − − − −
= − − + + +

− −
+ − − + + + 
 

− − − − −
+ − + +

− − − + −
− + −

− − + − −
+ − +

             (13) 

 
Collecting positive and negative terms together in the system (13), we obtain 

d
d
L Q Z
t
= −                                    (14) 

If we let 

( ) ( ) ( )( )( ) ( )( )( )
( ) ( ) ( )( )( ) ( )( )

( )( ) ( )( ) ( )

* * * * * *

2* * * * *
2

* * * * *

1 1

1 1

1 1

Q a S S S S R R S S I I S S
S I

V V V V I I P P V V
V P

T T I I R R T T I I
T R

φ λ

µ γ δ γ

σ η τ

= − + − + − − + − −

+ − − + − − + − −

+ − − + − − + −

 

And 

( ) ( ) ( ) ( ) ( )

( )( ) ( )( )

2 2 2* * *
1 1 3

2 2* *
2 1

1 1 1

1 1

Z S S I I P P
S I P

T T R R
T R

λ µ ε µ σ µ

µ

τ

η µ φ

= − + + + − + + + + −

+ + − + + −
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then d 0
d
L
t
<  and only if * * * * *, , , ,S S I I V V P P T T= = = = =  and *R R= . Therefore the maximum compact 

invariant set in ( ) d, , , , , : 0
d
LS I V P T R
t

 ∈Ω = 
 

 is the singleton { }*E  is the endemic equilibrium of the model  

system (1). Then by LaSalle’s invariant principle it implies that E∗  is globally asymptotically stable in the in-
terior of Ω  if Q Z<  [11]. 

3.7. Model in the Absence of Treatment (σ = 0 and T → 0) 
Now we consider the situation when there is no treatment of the acute infective i.e. ( )0σ =  and ( )0T → . We 
therefore obtain the effective reproduction number as 

( )( )1
1 2 1

.e
aR αδ

κµ µ γ τ ε µ
=

+ + +
 

We note that 
1e eR R<  as 

1e eR R→  when 0σ → , therefore we conclude that the endemicity of the infec-
tion in this case is increased in the absence of treatment. 

3.8. Model in the Absence of Bacteriophage (P = 0 and γ = 0) 
In this case, we consider the situation where there is no bacteriophage in the model system (1). Since there is no 
bacteriophage then, 0γ =  implying that 0P = . We therefore obtain the effective reproduction number as 

( )( )2
1 1 2

.e
aR

τ
αδ

κµ ε µ σ µ
=

+ + +
 

In this situation, it is observed that 
1 2e e eR R R< < , when 0γ =  and 

1 2e eR R→ . Therefore we conclude that  
the infection in this case increases in the absence of bacteriophage which may contribute to lessen the severity of 
cholera epidemics by reducing the number of Vibrio cholerae in the environment. After analysing the two epi-
demiological situations discussed above, it may be concluded that in the presence of both bacteriophage and 
treatment in the model system, the disease tends to the disease free equilibrium points, otherwise the disease 
tends to endemic state. Therefore the presence of bacteriophage and treatment can reduce the number of Vibrio 
cholerae in the environment and the number of infectives within the society is also decreased, hence the disease 
tends to die out. 

4. Numerical Simulation 
In order to illustrate analytical results of the study, numerical simulations of the nonlinear model system (1) are 
carried out using the set of estimated parameter values below 

1 2 3

5, 5, 0.2, 0.015, 1000000, 0.14, 4, 1,
0.97, 0.7, 0.0000548, 2, 5, 0.000001.

a gα τ ε κ σ γ
η φ µ µ δ µ
= = = = = = = =
= = = = = =

             (15) 

Figure 3 shows the proportion of susceptible population plotted against infected population and Vibrio 
cholerae population. Then the proportion of Bacteriophage population plotted against Vibrio cholerae popu-
lation. This shows the dynamic behaviour of the endemic of the model system (1) using the parameter values 
in (15) for different initial starting values in three cases as shown below 

1. ( ) ( ) ( ) ( ) ( ) ( )0 1500, 0 1300, 0 1000, 0 500, 0 1000 and 0 600S I V P T R= = = = = =  

2. ( ) ( ) ( ) ( ) ( ) ( )0 1100, 0 800, 0 500, 0 400, 0 300 and 0 200S I V P T R= = = = = =  

3. ( ) ( ) ( ) ( ) ( ) ( )0 1500, 0 1200, 0 300, 0 700, 0 1000 and 0 800S I V P T R= = = = = =  

Figure 4 shows the proportion of treated population plotted against infected and recovered population. This 
shows the dynamic behaviour of the endemic of the model system (1) using the parameter values in (15) for dif-
ferent initial values in three cases as shown below 
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Figure 3. Variation of Proportion of Susceptible Population against Infected Population and Vibrio cholerae Population, and 
then proportion of Bacteriophage population against Vibrio cholerae population.                                      
 

  
Figure 4. Variation of Proportion of Treated Population against Infected and Recovered population.                     
 

1. ( ) ( ) ( ) ( ) ( ) ( )0 150, 0 130, 0 100, 0 50, 0 100 and 0 60S I V P T R= = = = = =   

2. ( ) ( ) ( ) ( ) ( ) ( )0 200, 0 120, 0 40, 0 80, 0 100 and 0 150S I V P T R= = = = = =  
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3. ( ) ( ) ( ) ( ) ( ) ( )0 170, 0 120, 0 110, 0 80, 0 100 and 0 200S I V P T R= = = = = =  

The equilibrium point of the endemic equilibrium *E  was obtained as 
* * * * * *100.9 and 1448, 96.14 and 1152, 1553 and 1315,S I S V P V= = = = = =  

* * * *99.12 and 130.4, 99.12 and 130.4T I T R= = = =  

It is observed from Figure 3 and Figure 4 that for any starting initial value, the solution curve tend to equilib-
rium *E . Therefore we conclude that the model system (1) is globally stable about this endemic equilibrium 

*E  for the parameters displayed in Equation (15). 
Figures 5(a)-(c) show the variation of proportion of total population in different classes, Treated population, 

Recovery population for different values of η  (the rate of recovery (perday)). 
From Figure 5(a), it is observed that when the bacteriophage population increases continuously, the number 

of Vibrio cholerae in the system decreases. The number of infectives decreases due to the fact that, the function 
of bacteriophage is to reduce the number of Vibrio cholerae that causes the disease (Cholera), so when the 
number of Vibrio cholerae decreases the number of infectives also decreases. Furthermore, from the figure it is 
observed that the treated population decreases, then move to recovered population and finally to susceptible 
population 
 

  
(a) 

  
(b)                                                       (c) 

Figure 5. Distribution of population with time in all classes of human, Vibrio cholerae and Bacteriophage, variation of pro-
portion of treated population, Recovered population for different values of η  (the rate of recovery (per day)).                
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From Figure 5(b), it is observed that, when the value of eta increases the treated population decrease that is 
due to the fact that many infected people get treatment as a result they recovery and go back to susceptible 
population, so we can conclude that when the number of eta increase the treated population decrease. 

From Figure 5(c), it is observed that the recovered population increases as the number of eta increases. When 
( )0η =  the number of recovery population decrease because there is no treatment, but when ( )0.97η =  the 
recovered population increase due to combination of treatment and bacteriophage in the system. 

Figure 6(a) and Figure 6(b) shows the variation of proportion of Vibrio cholerae population for different 
values of γ  (phage adsorption rate (per day)) and the variation of proportion of infected population for differ-
ent values of σ  (the rate of treatment (per day)). 

From Figure 6(a), it is observed that when the rate of treatment increases, the infected population decreases. 
From Figure 6(b), it is observed that when the phage absorption rate increases, the Vibrio cholerae popula-

tion decreases. 

5. Discussion and Conclusion 
A nonlinear mathematical model has been analysed to study the effect of bacteriophage and treatment in the en-
vironment while the cholera epidemic is in progress. This study is the extended work done by [6]. Qualitative 
analysis of the model shows that the model has two equilibrium points, the disease-free equilibrium and endemic 
equilibrium points. The stabilities of the equilibrium points are investigated. The model shows that the dis-
ease-free equilibrium is locally asymptotically stable by using comparison theory at threshold parameter less 
than unity and unstable at threshold parameter greater than unity, but globally the disease-free equilibrium is not 
stable due to existence of forward bifurcation at threshold parameter equal to unity. The analysis shows the ex-
istence of unique endemic equilibrium that is locally stable when the threshold parameter exceeds unity due to 
existence of forward bifurcation at threshold parameter equal to unity. Using Lyapunov technique, endemic equi-
librium is globally stable under certain conditions. A numerical study of the model was carried out to see the effect 
of key parameters on the cholera bacteriophage and treatment. The analysis shows that the combination of cholera 
bacteriophage and treatment has positive impact on the cholera eradication. It is clear and also observed that as the 
number of bacteriophage increases, the Vibrio cholerae decreases as a result of the infected population decreases. 
Therefore, bacteriophage may also be used as biological control agent in cholera endemic area. Also it is found that, 
the recovered population increases as the rate of treatment η  increases i.e. when 0η =  the number of recovered 
decreases because there is no treatment, but when 0.97η =  the recovered population increases because the in-
fected population received treatment and become recovery. Therefore the presence of bacteriophage and treatment 
reduce the number of Vibrio cholerae in the environment and the number of infected population within the 
 

  
(a)                                                       (d) 

Figure 6. Shows the variation of proportion of Vibrio cholerae population for different values of γ  (phage adsorption rate 
(per day)) and the variation of proportion of infected population for different values of σ  (the rate of treatment (per day)).   
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society is also decreased hence, the disease tends to die out. 
Based on the results of this study, we conclude that the most effective way to control cholera epidemic is well 

achieved by involving both bacteriophage and treatment. However, it is important to note that phage can reduce 
the number of Vibrio cholerae in the environment. Consequently, number of infected population within the so-
ciety is also decreased and severity of the disease is also checked. Hence by using phage as a biological control 
agent in the endemic areas, cholera is self-limiting in nature. Moreover, therapeutic treatment which includes 
hydration therapy, antibiotics and water sanitation should be administered during the cholera epidemic. Fur-
thermore, people should be educated on the awareness of the effective prevention methods which includes pro-
vision and use of clean drinking water, hand washing, environmental hygiene and sanitation, and also avoidance 
of potentially contaminated foods. 
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