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Abstract 

 
In this paper, a mathematical model for pediculosis infection was developed and analysed. The model 

was designed by dividing the system into six compactments leading to a system of ordinary differential 

equations. The model is built on the assumption that some of those with pediculosis infection are aware 

of the disease while others are not. Conditions are derived for the positivity of the solution, and the 

existence of disease free and endemic equilibria. It shows that the disease can be eliminated under certain 

conditions. The model equation was solved using the homotopy perturbation method and numerical 

simulation were carried out to investigate the effects of some of the transmission parameters on the 

dynamics of the infection. The results showed that with effective treatment, pediculosis can be eradicated 

from a human population. 

 

 

Keywords: Pediculosis disease; mathematical model; awareness infection; transmission dynamics and 

homotopy pertbation method (HPM). 
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1 Introduction 

  
Globally, there are hundreds of diseases caused by different parasites and Pediculus (Lice) is one of them. 

Pediculus are obligate exclusively human ectoparasites and are source of annoying infestations worldwide. 

[1]. According to history, humans acquired lice from gorillas several million years ago [2]. The oldest 

known fossils of louse eggs (nit) are almost 10,000 years old, though there is much less occurrence 

information for pubic lice than for head and body lice [3]. Pediculus belongs to the kingdom of Animalia, 

the phylum of Arthropoda the class of Insecta, the order of Siphunculata, the family of Anoplura, the genus 

Pediculidae and the species is Humanus (corporis, capitis and pubis) [4]. Pediculosis (louse infestation) is a 

disease caused by pediculus humanus. Pediculus humanus is a small insect with a large abdomen and legs 

equipped with sharps claws for holding hair and clothing fibers. The head of the louse is slightly narrower 

than the body. They do not have wings like other insect but they have piercing mouthparts for digging the 

skin and draining blood. This disease called pediculosis infects millions of school-age children between the 

ages of three (3) to twelve (12) every year in both developed and developing countries, because of the 

crowding and non-hygiene condition they may be experiencing [5].  It is also common for several members 

of the same household to be affected. Infestations are more common in the warmer months, as well as in 

areas with higher humidity [6]. Head lice cross all socioeconomic barriers, whereas body lice more 

commonly affect the homeless and displaced [7-9].  
 

The rate of infestation of pediculosis can be controlled by treatment of those infected. Awareness of the 

possibility of infection can also help in taking deliberate step in preventing or eliminating infection. In this 

paper, a mathematical model on the transmission dynamics of pediculosis infection has been developed. The 

model incorporates the awareness of the infection.  
 

2 Problem Formulation 

 
Pediculosis is a disease neglected by many due to its non-ability to kill but it causes inconvenience and 

morbidity to the environment. There is a critical need to understand its transmission dynamics and the effect 

of certain factors like treatment and awareness on the spread of the disease. Moreover, even though scholarly 

works exist on pediculosis infection, there is limited work on its modeling and the effect on the environment 

Chukwu [10] formulated a mathematical model of the system of equation describing the dynamics of 

pediculosis transmission and modeled the disease into five systems of ordinary differential equation a 

varying population and discovered that the disease can be contacted via person to person contact or other 

object used by the infected person and recommend more increase in awareness.The modified  model  is the 

continuation of the work of Chukwu [10] to include awareness of infection. 
 

2.1 Assumptions of the modified model 
 

1. There is no disease induced rate because the disease does not kill. 

2. Without treatment, the disease persists. 

3. The recovered population can be susceptible. 

4. At any stage, there can be natural death rate which may differ based on compartments.  

5. Any other disease generated as a result of scratch/persistence is neglected. 

6. Every immigrant without coming in contact with the insect or infected person remain uninfected. 

7. The recovered individuals can be susceptible but are now aware of the infection 

8. Some members of the susceptible population are aware, while others are not aware.  
  

2.2 Compartments of the modified model 
 

The total population size is sub-divided into six epidemiological classes as tabulated below: 
 

 

 



 
 
 

Wunuji et al.; Asian J. Pure Appl. Math., vol. 6, no. 1, pp. 104-117, 2024; Article no.AJPAM.1419 

 

 

 

106 
 
 

Table 1. Compartment of the model 
 

Variables Description 

AS (t) 
Susceptible population of those who are aware of pediculosis infection 

uS (t) 
Susceptible population of those who are not aware of pediculosis infection 

I(t) The infected population of humans who can transmit the disease to others 

IT(t) The population of the infected and undergoing treatment  
R(t) The population of recovered after treatment  

 

2.3 Notations of the modified model 
 

Table 2. Parameter of the Model 

 
Parameter Description 

  The rate at which susceptible individual get infected with pediculosis infection 

  Movement rate for individual who stopped adhering to preventive measures 

  Movement rate from R to 
AS  Class 

  Rate of progression from I to IT and INT  

  Proportion of individual moved to the treatment class 

)1( −  Proportion of individual not moved to the treatment class 

  Natural death rate associated with each of the compartment (class) 

u  Recruitment number of individual who are not aware of the pediculosis 

A  
Recruitment number of individual who are aware of pediculosis infection 

  The rate at which individual recover from the pediculosis infection 

  Movement rate for unaware to awareness 
 

2.4 Description of the model 
 

In this work, the manifestation of pediculosis in the population is divided into six compartments which gives 

six differential equations according to their epidemiological state which are: the susceptible who are aware 

SA(t), who are not aware Su(t), the infected I(t), the infected but treated IT(t) and the recovered R(t). 
 

The susceptible class is the set of people that have not come in contact with the pediculosiss, may or may not 

be aware of the possibility of pediculosis infection. They are the people coming into the population. The 

susceptible population that is aware is assumed to be taking preventive measure. The infected class is the 

population that has gotten the disease and can transmit it to other, the infected and treated set of people that 

are infected and are receiving treatment to recover, the infected and not treated people are those that are 

infected but are yet to receive treatment which the disease remain with them (persevere), while the recovered 

class is the set of people that have recovered from the disease due to treatment. The natural death  can take 

life at any time. 
 

2.5 The flow diagram of the modified model 
 

 
 

Fig. 1. Flow diagram of the modified model 
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2.6 The model equations  

 
Based on our assumptions; variables and parameters on Tables 1 and 2 and the flow Diagram on Fig. 1, the 

following equations where derived for the modified model. 

 

AAuA
A SSRS

dt

dS
 −−++=                  (1)

  

ISSSS
dt

dS
uuuAu

u  −−−+=                  (2) 

 

IIS
dt

dI
u )(  +−=                    (3) 

 

T
T II

dt

dI
)(  +−=                    (4)                  

 

RI
dt

dR
T )(  +−=                    (5) 

 

3 Analysis of Results 

 
Here, we will analyze the present model in order to understand the transmission level of pediculosis and 

verify if the disease can die off or not. 

 

3.1 The disease-free equilibrium (DFE) 

 
This is a situation where is no infection; the population is absent of pediculosis, so no one is infected or 

recovered. The disease-free equilibrium point is gotten by setting  

 

0=====
dt

dR

dt

dI

dt

dI

dt

dS

dt

dS TuA
,                 (6)

  

 

and letting the infected classes equal zero then 

 

0=I , 0=

TI , 0=R   

 

hence equation (1)–(5) reduces to 

 

0)( =+−++ 

AuA SRS 
                 (7)

 

 

asrewrittenbecanandequation

ISSS uuAu

)8()7(

(8)0)( =−+−+  
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AAu SS −=+−  )( 
                  (9) 

 

asrewrittenbecanandequation

SS uAu

)10()9(

(10)                                                                                           )( −=++−  

                       
 

AuA SS =−+   )(
                               (11) 

 

uuA SS =++−  )( 
                (12)

 

 

Multiply equation (11)   by 
 

 

AuA SS =−+   )(
                (13)

 

 

Multiply equation (12) by )(  +
 

 

uuA SS +=++++−  )())(()( 
             (14) 

 

  uAuS ++=−++  )())(( 
              (15)

 

 

  uAuS ++=−+−+  )() 2 
             (16) 

 





)(

)(
2 ++

++
= uA

uS

                (17) 

 

Multiply through by  

 

)(  +
                               (18) 

 

AuA SS +=+−++  )()())(( 
              (19) 

 

Multiply through by   
 

uuA SS =++−   )(
               (20) 

 

  uAAS ++=−++   )())((
             (21) 

 





)(

)(
2 ++

++
= uA

AS

               (22) 

 

The disease-free equilibrium 
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( )0,0,0,0,, = uA SS   










++

++

++

++
= 0,0,0,0,

)(

)(
,

)(

)(
22 





 uAuA

           (23)

 

 

3.2 Local stability of disease-free equilibrium 

  
The disease-free equilibrium points for the system (1) to (5) is locally asymptotically stable if R0<1 and 

unstable if R0>1 

 

The Jacobian Matrix of the model is given by 
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(24) 

 

At DFE, we had  

 

( ) = RIIISSF NTTUA ,,,,0 








++

++

++

++
= 0,0,0,0,

)(

)(
,

)(

)(
22 





 uAuA
 (25)

   

Let  

 

K1=




)(

)(
2 ++

++
= uA

uS                 (26) 
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00)1(00

00)(00

000)(00
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k

EJJ P
 (27) 
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













−+−

−−−

−+−

−−−−+−

−−+−

−+−

=−

)(0000

00)1(00

00)(00

0)1()(00

000)()(

000)(

1

0

k

IJ

  (28)

 

 

( )( )( )( )( )( ) 0)()()( =−+−−−−+−−+−−+−−+−    
(29)

  

),(1  +−= ),(2  +−= ),(3  +−=
             (30) 

 

)(4  +−= , )(5  +−= and )(6  +−=              (31) 

 

Therefore, DFE is locally asymptotically stable because R0 < 1 

 

3.3 Local stability of the endemic equilibrium  

 
The dynamics of a disease is known by the stability at the endemic equilibrium. We will investigate the 

stability of the model equation at the endemic equilibrium. The endemic equilibrium is locally 

asymptotically stable if 10 R
. 

 

3.4 The Basic reproduction number (R0)  

 
The basic reproduction can be obtained by inspection in where there is only one infective class but in where 

there is more than one infective class, we apply the technique of (Diekman et al, 1990) which has been 

further studied by Van den Driessche & Watmough (2002). The reproduction number, R0 is the average 

number of secondary cases an infectious person can transmit the disease to the susceptible population during 

his life time. 

 

The most important threshold parameter that determines whether an infectious disease can invade a 

population is the basic reproduction number. If  ,10 R
 

 

3. 5 Local stability of the endemic equilibrium  

 
The dynamics of a disease is known by the stability at the endemic equilibrium. We will investigate the 

stability of the model equation at the endemic equilibrium. The endemic equilibrium is locally 

asymptotically stable if 10 R
. 

 

the disease-free equilibrium is said to be locally asymptotically stable and the disease cannot invade the 

population. R0> 1, then the disease-free equilibrium is said to be unstable and there is possibility of the 

disease invading the population: 

 

If ,10 R then model (1) to (5) has a unique disease-free equilibrium. 

 

If ,10 R  then model (1) to (5) has a unique endemic equilibrium. 

 

3.6 Effective reproduction number (R) 
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The effective reproduction number is the average number of secondary cases per infectious case in the 

population made up of both of susceptible and non-susceptible hosts. If R>1, the number of cases will 

increase, such as at the start of epidemic. Where R=1, the disease in endemic, and where R<1 there will be a 

decline in the number of cases.  

 

The effective reproduction number can be estimated by the product of the basic reproductive number and the 

fraction of the host population that is susceptible.  

 

00 XRR =  

 

Now, to calculate the R0, we will consider the infected compartments which are these: 

 

IIS
dt

dI
u )(  +−=

  

               (32) 

 

T
T II

dt

dI
)(  +−=                 (33) 

 

We define iF  and iV
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Inverse of matrix V 
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Recall that  

 





)(

)(
2 ++

++
= uA

uS

  

Where USFVR  == − )( 1̀

0             
(41) 

 

Hence,  

 

 
))((

)(
0
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

+++

++
= uAUR                 (42) 

 

Therefore, since the base reproduction number 0R  is less than 1. i.e. ,10 R the disease has a unique free 

equilibrium state. 

 

3.7 Numerical simulations 

 
Under this section, we present the numerical simulation of the model; simulation of the model equation is 

conducted to fine out the dynamics of the disease awareness in the human population. The simulation is 

conducted using Maple. The initial conditions and parameter values are used and presented in Table 3.  

 

Table 3. Data for numerical analysis 

 

Parameter/Variable Values Source 

SA(0) 1500 Estimated  

SU(0) 1700 Chukwu [10] 

I (0)  700 Chukwu [10] 

TI
(0)

 400 Chukwu [10] 

R (0) 150 Chukwu [10] 

  0.0091 Estimated 

  0.05 Estimated 
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Parameter/Variable Values Source 

  0.00123 Estimated 

  1.477 Chukwu [10] 

  0.438 Estimated 

  0.00578 Estimated 

A  0.01252 Estimated 

  0.829 Chukwu [10] 

U  0.02503 Chukwu [10] 

  0.1 Estimated 
 

 
 

Fig. 2. The effect of the treatment rate on compartments of infected individual over time 
 

 
 

Fig. 3. The effect of non-adherence to preventive measures on the susceptible class that are aware over 

time 
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Fig. 4. The effect of adherence to preventive measures on the treated class over time 

 

 
 

Fig. 5. The effect of the treatment rate on the treated class over time 

 

3.8 Discussion of analytical results 

 

From the findings of this research, there exists a disease-free equilibrium state. It was shown that if , 

and then the disease-free equilibrium state is locally asymptotically stable, which implies that the disease 

could be eradicated under this condition in finite time. We also showed that an endemic equilibrium state 

exists if , and then the endemic equilibrium is locally asymptotically stable. 

10 R

10 R
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Fig. 6. The effect of the recovery rate on the treated and recover class over time 

 

3.9 Discussion of numerical results 

 
Fig. 2 Shows the relationship between the susceptible populations who are using both treatment 

compartments, and show how the infected individuals move to the treatment class. 

 

Fig. 3 Shows the relationship between those infected with pediculosis who are undergoing treatment , the 

result shows that there is high recovery rate as the treatment rate increases the result also shows that the 

treatment rate increases in the population, there is increase in the  population  

 

Fig. 4 Shows the relationship between those infected with pediculosis that are undergoing treatment . The 

results prove that there is a high recovery rate from pediculesis as the treatment rate increases as the infected 

pediculosis population, increase in recovery rate yields a decrease in the infected population. 

 

Fig. 5 Shows the relationship of individuals   who moved to the treatment class on the infected population

I .The result validate that with the use of awareness, there is reduction in I and show that the more 

individual move to treatment class, the more the infected population class. 

 

Fig. 6 The results shows that as the rate of those who are fully recovered   increases, the susceptible 

population of those that are aware also increases. 
 

4 Conclusion 

 
In this research, the mathematical model of pediculosis was developed using a system of first ordinary 

differential equation, the disease-free equilibrium state (DFE) was obtained. The effective reproduction 

number Ro of the model was obtained. The disease-free equilibrium was analysis for local stability. The 
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results showed that, the DFE is locally asymptotically stable if 10 R . The model equation was solved 

analytically using Runge-kutta method. Graphical profiles were obtained from the numerical solution of the 

model using Maple 15. We also showed that an endemic equilibrium state exists if 10 R , and then the 

endemic equilibrium is locally asymptotically stable. There is a decrease in the pediculosis infection due to 

awareness. 
 

Based on our findings, we recommend that they should be more of awareness and treatment should be made 

available for the  public especially for the rural dwellers. 
 

1. Study should be carry out on vaccination of pedeculosis 

2. Government and other immunization partner should be reinforce 
 

Competing Interests 
 
Authors have declared that no competing interests exist. 
 

References 
 
[1] Castelletti N, Maria VB.  Deterministic approaches for head lice infestation and treatments: Infectious 

Disease Modelling. 2020;5(2020):386-404.  

DOI: ORG/10.1016/J.IDM.2020.05.002 

 

[2] Jessica EL, Julie MA, Lauren ML, Tamar EC, Lisa B, Ganbold S, Didier R and David L. Geographic 

Distribution and origins of Human Head Lice (Pediculus Humanus Capitis). Journal of Parasitology. 

University of Florida. 2007;94(6):1275-1281.  

 

[3] Shekelle PG, Woolf SH, Eccles M, Grimshaw J. Clinical guidelines: Developing guidelines. BMJ 

(Clinical researched.). 1999;318(7183):593-596.  

DOI:org/10.1136/bmj.318.7183.593 

 

[4] Dirk ME. In principles and practice of pediatric infectious diseases (5th ed). Elsevier; 2018.  

DOI: org/10.1016/C2013-0-19020-4 

 

[5] Brouqui P, Raoult D. Arthropod-borne diseases in homeless. Annals of the New York Academy of 

Sciences. 2006;1078(1):223-235. 

DOI: org/10.1196/ANNALS.1374.041 

 

[6] Dagrosa AT, Elston DM. what’s eating you? Head lice (Pediculus humanus capitis). Cutis. 

2017;100(6):389-392. 

 

[7] Cetinkaya U, Sahin S, Ulatabanca RO. The Epidemiology of Scabies and Pediculosis in Kayseri. 

Turkish Society for Parasitology. 2018;42(2):134-137.  

DOI: org/10.5152/TPD.2018.5602 

 

[8] Van-den Driessche P, Watmough J. Reproduction Numbers and Sub-Threshold Endemic Equilibria 

for Compartmental Models of Disease Transmission. Journal of Mathematical Bioscience. 

2002;180(2):29-48.  

DOI: org/10.1016/s0025-5564  

 
 
 

https://doi.org/10.1016/j.idm.2020.05.002
https://doi.org/10.1196/annals.1374.041
https://doi.org/10.5152/tpd.2018.5602


 
 
 

Wunuji et al.; Asian J. Pure Appl. Math., vol. 6, no. 1, pp. 104-117, 2024; Article no.AJPAM.1419 

 

 

 

117 
 
 

[9] Dickmann O, Heesterbeek JAP, Melz JAJ. Mathematical Epidemology of  infection diseases and the 

computation of the Basic Reproductive Number R0in models of infection Diseases in Hetrogeneous 

Populations. Journal of mathematical Biology.,1990;28:365-380 

 
[10] Chukwu FI. A Mathematical Model on the transmission dynamics of pediculosis Infection, 

Unpublished M.Sc. Thesis, University of Nigeria, Nsukka. 2020;57. 
_____________________________________________________________________________________________________________ 

© Copyright (2024): Author(s). The licensee is the journal publisher. This is an Open Access article distributed under the terms of the 

Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and 
reproduction in any medium, provided the original work is properly cited.  

 

 

 

Peer-review history: 

The peer review history for this paper can be accessed here (Please copy paste the total link in your 

browser address bar) 

https://prh.globalpresshub.com/review-history/1419 


