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ABSTRACT

This paper presents the good prediction of motion an artificial satellite using radar data under perturbation forces, the

perturbed J, Earth’s gravity and the atmospheric drag with the best atmospheric density model which depends on both Sun

magnetic field and solar activity.

To propagate the orbit, we have to determine the initial conditions by using at least three different values of range and their

corresponding values of azimuth and elevation angles for radar data. The differential equations of satellite motion are solved

using Runge-Kutta method of the fourth order with application on the radar data of EGYPTSAT-1.

INTRODUCTION

The simple configuration to determine the
position and velocity of the satellite needs one
ground station. The pointing angles in the topo-
centric system of the ground station are obtained
by measuring the direction of the maximum sig-
nal amplitude of the satellite. The slant range or
distance from the satellite to the station is com-
puted from the round-trip time of a radar signal
emitted from the ground station antenna to the
satellite and radiated back to the station.

The range rate or line-of-sight velocity of the
spacecraft relative to the ground station can be
derived from the Doppler shift of a radar wave
emitted from the ground station, transponded by
the satellite, and received again at the ground
station. (Oliver Montenbruck and Eberhard Gill,
2005)

2. Determination of the site’s position vector

The first step is to determine the position vec-
tor of the ground station. The location of sta-
tion gives from the following equation (Vallado,
2001)

r.cos(0)
Tosy =| 1;5(8)
r, Q.1
where
r.=(C, +h)cos®), (2.2.1)
r,=(S, +h)sin(0) , 2.2.2)
Se =Cp (1-€2), (2.2.3)
Re (2.2.4)

Co = = ’
J1-€2sin*@©)

and also,
6 =local sidereal time,

R, = the mean of equatorial radius of the

Earth = 6378.1363 km,

e, = the Earth's of eccentricity =

0.081819221456,
h = the height of station,
¢ = the latitude.

3. Transformation from topocentric coordi-
nate system (SEZ) to inertial coordinate system
(1JK)

This transformation is based on at least three
observations of slant range, azimuth and eleva-
tion (p, A, and G, where 1 =1, 2, 3). Since

ﬁSEZ:pS§+pEE+pZZ (3.1
where

p. =—p cos(El)cos(Az, (3.2.1)
ps =—pcos(ED)sin(A z). (32.2)
py,= psin(4z) . (3.2.3)

The azimuth angle (A) is measured clock-
wise from north; it takes values from 0° to 360°.
While, the elevation angle (G) is measured from
the horizontal to the radar line-of-sight; it takes
values from -90° to 90°. The distance from
ground station to the satellite is defined as, slant
range (p).

Equation (3.1) is expressed in the top-cen-
tric coordinates system (SEZ). So, we have to

convert Pszz to the inertial coordinate system
K.
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The transformation matrix from topocentric
coordinates system (SEZ) to the inertial coordi-
nates system (IJK) is used. This transformation
is achieved by two rotations. The first rotation
is achieved through the local sidereal time 0; the
second rotation is achieved through the latitude
(Vallado, 2001). Thus, the transformation matrix
is given by

Ginp)eos®)), Can@)) (oslh)cos@))
Tz, = | Gn0)sin®))  (cos®))  (cos(h)sin(®))
- cos(h)) 0 Ginh))
, 1=1,2,3.(3.3)

Currently, the line-of-sight unit vector could
be computed by the following relation

—cos(G, yeos(4, )
L= T(SEZ—)ijk)!. cos(G, )sin(4,) |,
sin(@G, )
i=1,2,3. (3.4)

From equations (2.1, 3.1 and 3.4) we deduce
that

ﬁf}l‘], = riLi+Fia.\'bJ_.’ 1:1’2’3 (35)
The last equation gives three positions vec-

tors (F, T ?,) in the inertial coordinate system.
Now we briefly discuss the Gibks Method to
get Y2 which is corresponding to " (Vallado,

2001 e~ Bate et al., 1971) as follows. The ve-
lacitys 'I/'2 ran he \x/'ritten as

"

v,=—£B+L S, (3.6)
I h

where ~

B=Dxt (3.7.1)

I 3.7.3
S:(rE_rz)ﬁ+(r3_?l)F2+(r1_rz)‘;z’( 7:3)
D=+ Gx7)+Gx7y  GT4
RN A PINMICRERCES
4. Perturbations Forces

This section is considered with the selected
perturbations force as mentioned above.

4.1 Earth’s gravity

The Earth is not a perfect sphere, it has an
eggplant shape. The effects of Earth’s oblateness
are gravitational differences or perturbations.
These effects are significant in low and medium

orbit.

If X is the position vector of the satellite in
the inertial frame, the equations of motion will
be described bv

. 5

Felr=-Z4p (3.8)
r o

where

- pis the Earth's gravitational constant,

- r is the distance of the satellite from the
origin, since

2 B B B
Fo=Xx+ X, + X5,
- Vs the perturbed time-independent po-
tential, given by

V:;uR@JQr_jxg—%uRe,Jgr% +§pR$J3r"?x33—

%LLR&%B'_S,@ +%|J*Re> Jy r_gx::'—

%u Rodr it +§p, R Ir™

,(3.9)

- P’ is the resultant of all non-conserva-
tive perturbing forces and forces derivable from
a time-dependent potential. Consequently, £ :
depends on several forces In the present work,
as we mentioned above " consists of the drag
force only.

Now we have to determine the accelerations
due to Earth’s gravitational only or (J,, J, and J )
as the accelerations due to J 5 18

_ 5, _
1- 23
a, ; X, ¥ .
- _ 3UWRG J, 5x;
Pl T T ||
4, Ty X 3_5363?
r2 (3.10)
the accelerations due to J, is
s o
B 3x3——323
d, x 4
_ 5UREJ, Tos
a}, :—T xz 3x3—?
.?1 X 3
z 1 3 7x
6x3—r—f (3.11)

- and finally the accelerations due to J, is
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- 5 o
1_14;{3 +214x3
_Lx x F F
| USRS, 1_14x§ 2152
T g %, 2 A (3.12)
Zooly, & 5_70x§ 21x;
i 32 r ]

4.2 The atmospheric drag

The drag force depends on the satellite’s co-
efficient of drag and its velocity. This differs
widely among satellites. The resistance of the
atmosphere is one of the most important perturb-
ing forces in the altitude region from (200-600)
Km, then the drag force per unit mass of the
satellite can be represented (Kampos, 1968 and

Filzpatrick. 1970) bv
= 1C y A 2 YV
o o, (3.13)

aa.’rag - 2 - rel

rel

where

e C, is the non — dimensional drag coefficient
(2.0 t0 2.2),

e A is the cross-sectional area of the satellite,
¢ m is the mass of the vehicle,

e The ratio Cy 4 is call ballistic coefficient

(BC), m

Vo, . . . .
e el is velocity vector is relative to the atmo-
sphere.

e p is the atmosphere density,

This density has many irregular and complex
variations both in time and position. It is largely
affected by solar activity and by the heating or
cooling of the atmosphere. The time variations
are difficult to be included in an analytical ex-
pression. Since the atmosphere is not actually
spherically symmetric but tends to be oblate, we
have to count for these oblations in any expres-
sion for the density. There are some important
factors that affect the atmospheric density:

Diurnal variations, Solar-rotation, Sun spots,
Magnetic-storm variations and etc.

In this paper, using density modal called
GOST model atmosphere (I'OCT 25645.115-
84, 1991). This model is developed empirically
from observation of the orbital motion of Rus-
sian creation satellites. The model includes the
dependence of the density on solar and geomag-
netic activity as well as the diurnal and semian-
nual density variation. This model is valid for
satellites in the range of 120-1500 km.

Now we have to determine the accelerations
due to the atmospheric drag only as

AR
s m -
a, = | ¥ Wg X |,
= (3.14) Vrer 3
2 Adrag
(3.14)
where ©© is the west-to-east angular veloc-

ity of the atmosphere.
5. RESULTS AND DISCUSSION

Finally the equation of motion of satellite under
the select perturbation force can be written as

S
=

5 2.0
L === |+ + yJ +
r
7

215, z

P
2l
[Tt

hl
b Ry

]
+
=

el
3

3
3
3
3
3

2 PR = P

(5.1)

We’ll use the Runge-Kutta method of the

fourth order to solve numerically the above

equation (the differential equations of satellite
motion under perturbation).

Now, let us consider as a real example the ra-
dar data of EGYPTSAT-1, which has mass 160
Kg and ballistic coefficient 0.002 m*Kg, We =
7.292115833x107 rad/sec (Awad, 1988), ground
station coordinates (¢ = 30°.0503, A = 31°.6070
and h = 340.7664 m) and the radar data are

i
1
2
3

Date and time Ai(Deg.)  Gi(Deg.) pi (Km)

2011/04/20 06:54:46.098  48.760 0.000
2011/04/20 06:56:45.344  64.707 4.229 2560.9551

2011/04/20 06:58:45.344  85.502 6.679 2339.53135

From the transformation matrix (Eq.3.5) we can get

:

L

¥

|

5552 50243508205 TEIATIZREOTIER 4214 00016261085

4001 4541 2139538 56 2B05525076W 4885 33536701409
A024.26034218512 A96.TEI2I906648 3460 2612546468

2998.225071

Km
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Using the Gibbs Method (Eq. 3.6 and 3.7) we
get

v, = [4.58102142046041:’ - 06651608152 § —5.933352611415]

Km/sec
So, from 2 and V2 we can calculate orbital
elements (initial conditions) which are
a=7038.4643 Km, e =0.000890947,
1=97.9411415 Deg, ® = 55.67025 Deg,
Q=182.00043 Deg, M = 87.03243 Deg.

The following table represents the compari-
son between our results and the published one
on the NET.

The The published The
element Our results one difference
e | oo | OO0
a (Km) 7038.7 7038.800 0.1000 Km
e 0.000890947 0.0004666 0.00120
i(Deg.) | 097.9411415 097.94230 0.1636000 Deg.
® (Deg.) | 055.6702500 269.23800 213.56775 Deg.
Q (Deg.) | 182.0004300 181.83680 0.1636000 Deg.

Notice that the argument of perigee (®) is
large difference that is because it depends on
time.

Now, we have achievement our first goal of
our work in this paper. The other goal in this
work we studied the effects of forces on the mo-
tion of an artificial earth's satellites which are

i) the earth's gravitational field up to the
fourth zonal harmonic, and

Mervat A. Awad., et al.

ii) the drag force with air density model
(GOST Model).

And now we propagate our TLE (the initial
condition) for one week (100 revolutions) with
the value of 60 seconds as the time step and yield
the following figures. These figures (Fig. 5.1 up
to 5.5) show the variation of the classical orbital
elements with the time over 100 revolutions with
approximation of Wg equals the west-to-east an-
gular velocity of the Earth.

6. CONCLUSION

We notice from the above Figures that the
difference between perturbed drag force and
Earth’s gravitational force is clear due to the
effect of these forces. While, the effect on the
elements inclination and longitude of ascending
node are not change & not significant that was
expected, because of the inclination was only
affected by the solar radiation pressure; and the
EGYPTSAT-1 is Sun-synchronous satellite, so
the longitude of ascending node is not affected.

Also, we can conclude that for seven mean
solar days, there is obviously decay in the two
elements (semi-major axis and eccentricity) but
the other elements are lightly change except the
inclination and longitude of ascending node.
This expected because the only force affecting
on the motion of artificial satellite is Earth’s
gravitational field and the drag force. These
forces slightly affect on the elements (inclina-
tion, longitude of ascending node and argument

effects of Perturbations forces
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Fig.(5.1): Change of the semi-major axis under the perturbation force.
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Fig.(5.3): Change of the inclination under the perturbation force.
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Fig.(5.4): Change of the longitude of ascending node under the perturbation force.
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Fig.(5.5): Change of the argument of perigee under the perturbation force.
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Fig.(5.6): Change of the true anomaly under the perturbation force.

of perigee) where these elements are strongly
affected by the other forces like solar radiation
pressure, and etc.

To get more accurate prediction of the mo-
tion of the artificial satellite we will be taken into
account the whole other forces affecting on the
motion of the artificial satellite.
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ABSTRACT

Effect of perturbations due to gravitational potential and drag on ground track of satellites orbits are studded. Components

of velocity and position are obtained and the new orbital elements under the effect of perturbations are calculated to determine

the latitudes and longitudes of the ground tracks.
1. INTRODUCTION

There are several sources of perturbations
affecting satellite orbital motion from injection
point until the end of its lifetime. In general
orbit perturbations can be divided into gravita-
tional and non-gravitational forces. The gravi-
tational are those due to oblateness of the Earth
and sectorial spherical harmonics and effect of
sun/moon attraction. The non-gravitational per-
turbations include atmospheric drag force (the
dominant for low earth orbits), solar radiation
pressure (effective for geosynchronous satel-
lites), magnetic forces (due to the interaction of
the earth magnetic field with the dipole moment
induced in the satellite), etc. The gravitational
potential of the nonspherical earth models was
initiated by (Kozai, 1959), short period and long
period perturbations.

2. Equation of Motion with Perturbation

Knowledge of orbital motion is essential for
a full understanding of space operations. Motion
through space can be visualized using the laws
described by Johannes Kepler and understood
using the laws described by Sir Isaac Newton.

A satellite, under the influence of a perfect
inverse square force field law, would have a set
of constant orbital elements (a, e, i, M, Q, w).
The general form of the equation of motion in a

relative inertial coordinate system is given by

L, @.1)

where 7 is the position vector of the satellite,
4 is gravitational constant and £ is the resultant
vector of all the perturbing. /" may consist of
the following types of perturbation forces:

—  Gravitational potential,

—  Atmospheric drag.

In the presence of perturbations, the Keple-
rian orbit elements are no longer constant. The
concept of variation of parameters allows the
orbit elements to vary in such a way that, at any
instant, the coordinates and velocity components
can be computed from a unique set of two-body
elements as if there were no perturbations. The
equations of the variations can be derived from
the concept of perturbed variations. There are
two basic approaches to obtain the variation
equations in celestial mechanics. They are the
force components approach and the perturbing
function approach.

The former is sometimes called the Gaussian
method, and the latter is called the Lagrangian
method (Rowa, 2002).

3. The Gauss Form of Lagrange’s Equations

Now, summarize the formulae for the Gauss-
ian form of the variation of parameter equations
using the disturbing force with specific force
components resolved in the RSW system (figure

1)
da 2esinf 2a
—= F,.+7ZF;, (3.1
dt ny nr
. 2,2
@:;{smé’Fy+ ;(2 [a X _”ij 52)
dt na na-e\ r i
di _rcosu -
dt na’y v 63
dQ rsinu
V= .. I (3.4)
dt na” ysini
dﬂ:_lCOSQFr+£ sindl 1+ 1 F&v_rcotlzsmqu
dt nae eh I+ecosd )| - nay
(3.5)

2 2
., L 277{—0059 F-Z |14 }’2 sin@F,
dt na\ a e nae\ ay

(3.6)
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where
— @ =true anomaly,

—  n=mean motion,

X=+l-e

—  u=(0+ w), w argument of latitude,
p=a(l- e?)

h:\/mip, and

F along the radius vector, F perpendicular to
F_in the orbit plane along motion and ¥, normal
to the orbit plane, such that the positive direction
of (F, F, F ) from aright-hand set of axes (Cho-
botov). If disturbing function R = R(7;, u, i), the
comnonents of disturbing force are given by

OR
F=—, 1 6R
"oor F,=——
r()u’
1 ®

Y sin(u) oi

Fig.(1): Satellite Coordinate System in RSW.

This system moves with the satellite. The R-
axis points to the satellite, the W-axis is normal
to the orbital plane (and usually not aligned with
the K-axis), and the W-axis is normal to the posi-
tion vector. The W-axis is continuously aligned
with the velocity vector only for circular orbits.

4. Perturbation Induced by Zonal Harmonic of
the Geopotential

The potential function of the earth can be ac-
curately expressed as an infinite series of zonal

har . "
s r—”{l -3, [ij P, (sinL)],
L e 4 4.1

Where F (sinL) is the Legendre Polynomi-

al of order & and L is the instantaneous latitude.
The secular variation of the elements can be ob-
tained by double average of disturbing function
o (da_de _di _,

Ndtdtdt (George, 1963).
5. Perturbation due to Drag Force

Drag is more important with lower orbits,
where the atmosphere is more density that’s
miens more collision with satellite body. The
atmospheric drag is expressed by the drag force
per unit of mass in the following form (Frank,
A. Marcos)

F =—%CA,_j rviA. (5.1)

drag
Divide both sides of equation by mass of
satellite to obtain the acceleration of the atmo-
spheric drag : y
G _’_(F,1 pA_ o v
B g = 5 5 ry ‘VJ , (5.2)
where 4 effective cross-section area, C, drag
coefficient and m is the satellite mass assuming a
circular, equatorial orbit with an atmosphere ro-
tates with the Earth, the satellite velocity vector
with respect to the atmosphere, v, is defined as

=7, —W,xF, (5.3)

wheve Vir is the inertial velocity of the satel-
lite W is the rotational velocity of the Earth,
and 7 is the inertial satellite position vector.
The drag coefficient, presented area, and mass
may not be separately determinable, so these
three quantities are usually grouped into a sin-
gle quantity called the ballistic coefficient, B,

which is defined as
poCod
m
From this definition, it can be seen that in-
creasing the ballistic coefficient increases the
amount of drag that acting on the satellite. Since
the drag coefficient is relatively fixed, the bal-
listic coefficient can change only if the pre-
sented area of the satellite or the satellite mass
is changed. From equations (3, 4.1 and 5.1) we
can approximate changes in osculating orbital
elements (George, 1963).

The main parameter affect the drag force is
the density. The density of the upper atmosphere
is expressed as exponential function of altitude
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given by %

_ . ap ~ My

, P =P 33\1{ H (5.4)
where a reterence density p,, 1s used with the

reference altitude, 4, is the actual altitude he”p

and the scale height, H are illustrated in Table

(1) (Vallado, 2004).

Table (1): Atmospheric scale height & density.

Altitude Scale Atmospheric Density
Height
(km) (km) (Mean (kg/m3 | (Max (kg/m3
0 008.4 1.225 1.225
200 037.5 101 x 2.41 101 x 3.65
400 058.2 102 x 2.62 10" x 1.05
600 074.8 104 x 9.89 1013 x 8.46
800 151.0 10% x 6.95 104 x 9.41
1000 296.0 1015 x 1.49 101 % 1.43

Now, the elements of the orbit under perturba-
tions can be expressed as (Escobal, 1965)

Q=0,+QA, (5.5.1)
w=w, +WAf, (5.5.2)
a=a,+alt, (5.5.3)
e=e,t+teAt, 5.54)
I=I,+1A¢, (5.5.5)
M=M,+MAt, (5.5.6)

where the initial elements (a,, e, [, M, Q,

w,) and their accelerations are the variation of
elements at instant of time A¢.

6. Satellite Ground Track

A ground track is the projection of the sat-
ellite’s orbit onto the surface of the Earth (or
whatever body the satellite is orbiting). We can
determine the latitude and longitude of satellite
from the following equations

X = r(cochosu = sianinucosz‘), (6.1)

F= r(sichosu + cosQSinucosi), (6.2)

Z =rsinisinu, (6.3)
e a(l-e”)

Where ]+ecosu.

U= X2+}’3+Zl, (6.4)

sind=Z2/U, (6.5.1)

sino=2/U,

Y (6.5.1)
sing = ———,
VX472 (652)

X
And CoOS = —————,
VXP4Y? (653)
Then A=a—-G. Sidereal Time
(6.6.1)
p=0-¢. 6.6.2
Where @' calculated from (6.6.2)
o = tan‘[ tan o }
a-N*

where f is the flatting of the earth.
7. Results and Conclusion

A computer program has been developed to
solve the equation of orbital motion of two body
problems with perturbations due to atmospheric
drag force and the gravitational potential using
Matlab. The variation of latitude &longitude of
satellites was calculated. We applied these on
the four satellites (YAOGAN 5, VANGUARD 3,
USA 40 r and MOLNIYA 3-3) which TLE which
obtains from celectrack web page as follow

YAOGAN 5

1 33456U 08064A  12159.19771302
.00012207 00000-0 34867-3 0 9002

2 33456 097.2574 230.6430 0011018
130.3255 314.5637 15.3609004319

VANGUARD 3

1 00020U  59007A  12158.38978192
.00000774 00000-0 30811-3 0 9586

2 00020 033.3463 172.0875 1683446
216.1252 131.3173 11.5189218389

USA40r

1 20344U 89061D  12156.94822004

0.00000190 00000-0 14430-30 09

220344 56.9980113.97673572000 181.8041
178.1959 7.86216249 01

MOLNIYA 3-3

1 08425U 75105A 12158.75025176 -
.00000305 00000-0 10000-3 0 1554

2 08425 063.7319 056.4327 7231782
244.5167 027.2896 02.0055820026

The results are shown in the following figures
at revolution no. 500. Fig.(2) shows the effect
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of perturbation on the ground track of satellite
YAOGAN 5. Fig.(3) shows the effect of per-
turbation on the ground track of satellite VAN-
GUARD 3. Fig.(4) show the effect of pertur-
bation on the ground track of satellite USA 40
r. Fig.(5) show the effect of perturbation on the
ground track of satellite MOLNIYA 3-3.

Start of rev.

Plot arouna rack
sof:
[
o b

Lattuc degresy

20 % i

o0
80 - R S T

o ] 100

Without ........

With

Fig.(2): Ground track of YAOGAN S5 satellite at
rev. no. 500.

Start of rev.

ot cround rack

Fig.(3): Ground track of VANGUARD 3 satellite
at rev. no. 500.
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WL :
Plot ground track
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Fig.(4): Ground track of USA 40 r satellite at rev.
no. 500.

Fiot ground track

£

=0 209 a0 300 380
East longilisde (degrees)

Without ........

With

Fig.(5): Ground track of MOLNIYA 3-3 satellite
at rev. no. 500.
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