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Abstract
Identifying phase transitions is one of the key challenges in quantum many-body physics. Recently,
machine learning methods have been shown to be an alternative way of localising phase boundaries
from noisy and imperfect data without the knowledge of the order parameter. Here, we apply
different unsupervised machine learning techniques, including anomaly detection and influence
functions, to experimental data from ultracold atoms. In this way, we obtain the topological phase
diagram of the Haldane model in a completely unbiased fashion. We show that these methods can
successfully be applied to experimental data at finite temperatures and to the data of Floquet
systems when post-processing the data to a single micromotion phase. Our work provides a
benchmark for the unsupervised detection of new exotic phases in complex many-body systems.

1. Introduction

Machine learning techniques have recently achieved remarkable successes in analysing large data sets in
various areas. These developments have also led to promising applications in quantum physics [1, 2].
Examples include the efficient representation of quantum many-body states [3], efficient state tomography
from restricted experimental data [4–6], the optimisation of experimental preparations [7–10] and the
identification of the phases of matter [11–20]. For the latter, machine learning methods have been applied to
data both from numerical simulations and from experiments such as scanning tunneling microscopy images
of condensed matter systems [21, 22], neutron scattering data from spin ice systems [23], as well as real and
momentum-space images of ultracold atomic systems [24–26]. When analysing experimental data, machine
learning can unfold its full potential by identifying relevant information despite noise and other
imperfections, such as finite temperatures or restricted access to the relevant observables. Another prospect
of machine learning analysis is to identify novel phases and order parameters in exotic regimes [26, 27].
While supervised machine learning methods, i.e., with labelled training data, have been broadly applied,
unsupervised methods dealing with unlabelled data have so far mainly been restricted to numerical studies
[14, 18, 28–36].

Machine learning techniques can be employed for various tasks related to phase transitions, including the
comparison of experimental data to competing theoretical descriptions in an unbiased way [25], the analysis
of patterns in the trained filters of convolutional neural networks [26, 27], the generation of new images [37],
or the extraction of physical parameters and concepts [38, 39]. Finally, the question of the interpretability of
neural networks has obtained a new stimulus due to their application to physical problems [15, 27, 40–44].
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Quantum simulators based on ultracold atoms in an optical lattice allow a variety of quantummany-body
systems to be engineered and probed using detection methods complementary to those used with solid-state
systems [45]. In particular, topological systems can be created by adding artificial gauge fields [46, 47] using
periodic driving, i.e., the so-called Floquet engineering [48, 49]. The topological phases of matter are an
active field of study, but the absence of a local order parameter generically poses a challenge to their detection
[50]. Therefore, the classification of topological phases has, in particular, been addressed by machine
learning techniques [32, 51–59]. With cold atoms, many detection methods have been demonstrated,
including the transverse Hall drift [60–63], Berry phase measurements [64], quantised circular dichroism
[65, 66] as well as Bloch state tomography [67–71]. The latter is based on momentum-space images
following quench dynamics, which also form the basis of the machine learning analysis in this article.

Here, we apply unsupervised machine learning techniques to experimental data from the topological
phases of a Haldane-like [72] model realised in ultracold atomic quantum simulators. We also address the
problem of dealing with the micromotion that inherently arises in Floquet systems using machine learning
for data post-processing, which allows the micromotion phase of all data to be fixed at the desired value.
Fixing the micromotion phase has proved vital for the successful application of unsupervised machine
learning methods, which are apparently dominated by a micromotion-induced change of graphic patterns.
As expected, unsupervised machine learning is more challenging than supervised machine learning, where
the identification of the phase transitions was successful, even in the presence of micromotion [24].

The unsupervised learning of phase transitions can roughly be divided into two categories:
clustering-based methods [15, 16, 29, 30, 33, 56, 73–75] and learning-success-based methods
[14, 18, 19, 28, 32]. In this work, we apply methods from both categories to the data, which we post-process
into a single micromotion phase. Clustering-based methods identify the phases by clustering the data in a
suitably chosen space and associating each cluster with a different phase, employing concepts such as
principal component analysis (PCA), t-distributed stochastic neighbor embedding (t-SNE), autoencoders
and diffusion maps. In this category, we find that a k-means cluster analysis in the latent space of an
autoencoder does identify the phase transitions, when it is separately applied to cuts through the phase
diagram. This approach, however, cannot distinguish between the different signs of the Chern number.
Learning success-based methods use the success of the training process for different trial classifications to
judge the similarity of the data. In this context, we use anomaly detection [18] and influence functions [42].
By carefully combining the information from these techniques, we can uncover the full phase diagram from
noisy experimental data in a completely unsupervised way. Our results provide an important benchmark for
unsupervised machine learning of the phases of matter and evaluate methods that might be useful for
revealing new exotic orders in complex systems.

The structure of this article is as follows. We start with a description of the methods used (section 2). In
section 2.1, we describe the experimental setup and the protocols used to obtain the data. Section 2.2 gives
an overview of the different machine learning methods we use within this work. In the results section 3.1, we
first employ latent space analysis to detect the different topological phases. Afterwards, we describe how to
post-process the data to a desired micromotion phase in section 3.2 and check the validity of this approach
using influence functions in section 3.3. We use the post-processed data to detect the different topological
phases again using the method of latent space analysis (section 3.4). Section 3.5 describes an anomaly
detection scheme used to separate different topological phases. We finally use the influence functions in
section 3.6 to distinguish between the two topologically non-trivial phases.

2. Methods

In the following, we start by explaining the technical details of the experimental setup. We continue by
describing the machine learning methods we use within this study.

2.1. Experimental setup and data acquisition
The data are obtained in experiments performed with ultracold atoms in optical lattices [45], which are
established as a very controllable system for studying solid-state physics in general and topological phases in
particular [46, 47]. The topological Haldane model [72] is realised by the Floquet driving of a honeycomb
lattice [62, 69, 76, 77]. In this specific configuration, the experiments start with a hexagonal lattice with a
large offset∆AB = 2π · 6.1 kHz between the two sublattices, realised by a suitable polarisation of the three
interfering laser beams that form the optical lattice [69] (figure 1(a)). The lattice is then accelerated on
elliptical trajectories by a phase modulation of the lattice beams, characterised by a shaking phase φ between
the modulation in the x and y directions. The resulting effective Floquet Hamiltonian features non-trivial
Chern numbers and gives rise to a topological phase diagram closely related to the original Haldane model
(figure 1(d)) [24, 71]. The control parameters are the shaking phase φ, which gives rise to time-reversal
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Figure 1. Experimental setup. (a) Three laser beams form a hexagonal optical lattice by interferience at 120◦ (left). The
polarisation, and thus the geometry, can be tuned via the two waveplates indicated by the black lines. The hexagonal lattice
consists of A and B sites with an energy offset,∆AB. We periodically drive the lattice on an elliptical trajectory (centre) in order to
obtain an effective Floquet Hamiltonian with Peierls phases on the nearest-neighbor tunneling elements (right) giving rise to
topological bands. (b) The atoms are adiabatically prepared in the lowest Floquet band by ramping the lattice depth, the shaking
amplitude, and the shaking frequency to different final values. Different hold times allow the sampling of different micromotion
phases given by the grey area under the curve. The atoms are imaged after a time-of-flight expansion of 21 ms. (c) Typical
momentum-space images for different shaking frequencies and shaking phases. The images are centred around zero momentum
and have a width of one reciprocal lattice vector. (d) The topological phase diagram for the lowest band as predicted by a
numerical Floquet calculation featuring the two lobes of the non-trivial Chern number, C=±1, characteristic of the Haldane
model.

symmetry breaking, and the shaking frequency fsh, which gives rise to non-trivial Chern numbers C=±1 for
near-resonant shaking with the sublattice offset fsh ≈∆AB/2π.

The numerical prediction for the phase boundary (figure 1(d)) results from a Floquet calculation for a
tight-binding model of the hexagonal lattice based on the shaking parameters and the calibrated parameters
of the static lattice. It has been shown to agree well with previous measurements of the topological properties
of the system [24, 66, 69, 71], except for a slight shift of the topological region towards higher frequencies for
the experimental data. This shift may be due to the uncertainty in the calibration of the static lattice or to
contributions from higher bands, which were neglected in the two-band tight-binding model. Note that the
calibration uncertainty of the polarisation of the lattice beams of 0.2◦ leads to an uncertainty of the expected
phase-transition points of around 200 Hz [24].

The experiments are performed with ultracold spin-polarised fermionic atoms of 40K with a mass
m= 40 u prepared in the lowest band of the optical lattice and formed by laser beams with a wavelength of
λ= 1064 nm, as in earlier works [24, 69]. The characteristic energy scale is the recoil energy
Erec = h2/(2mλ2). In the transverse direction, the cloud is weakly harmonically confined. In order to
adiabatically prepare the lowest band of the Floquet system, we gradually ramp up the Floquet drive in two
steps (figure 1(b)): (a) we ramp up the shaking amplitude to 1 kHz within 5 ms at the very off-resonant
shaking frequency of f inish = 4.5 kHz, (b) we ramp the shaking frequency up to the final value f finsh within
tramp = 2 ms at a fixed shaking amplitude. This ramping protocol strategy aims to keep the bandgaps as large
as possible and is well-established via earlier experimental and theoretical work [69–71, 78]. Due to Floquet
heating, this procedure leads to a typical population of the lowest band of 50%–75%. Previous work on
supervised machine learning has shown that the Chern number of the lowest band can be faithfully obtained,
despite the non-zero temperature [24].

For the detection of the state, all potentials are switched off, leading to a free expansion of the system
known as time-of-flight imaging. The expansion maps the original momentum distribution onto the
real-space density, which is then imaged by absorption imaging. This procedure can be related to Bloch-state
tomography [68, 69, 71], which is based on quench dynamics after projection onto a static lattice with large
∆AB, realising the special case of a zero hold time in the static lattice. This connection motivates the use of
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Figure 2. Schemes of the machine learning methods used within this work. (a) The architecture of an autoencoder with a
question neuron. The data is encoded in the bottleneck forming the latent space. An additional question neuron can be used to
feed additional data to the fully connected layers of the decoder. (b) Influence of a training example on a prediction. The sketches
show the loss of a single test point, whose minimum in the space of the network parameters is marked by a circle. Consider
removing a single training example from the training set and retraining the model. If the loss at the test point, Xtest, increases
(decreases), the removed training example is helpful (harmful) for making prediction atXtest. This procedure can be approximated
with influence functions.

the experimental images for detecting topology, although proper Bloch state tomography explicitly relies on
the full quench dynamics to disentangle the parameters [68].

In the experimental protocol, we hold the atoms in the Floquet system for different hold times thold at the
final shaking frequency in steps smaller than the Floquet period, in order to sample different instances of the
Floquet micromotion ϕ. The micromotion phase is then given by ϕ= f finsh (tramp/2+ thold)+ f inish tramp. This
convention traces the micromotion back to the start of the driving with a kick in a fixed direction and allows
the micromotion phases of the data to be related to different shaking frequencies. Micromotion is an
intrinsic property of Floquet systems, and while it can give rise to new physics [79, 80], it is often a nuisance
when studying the effective Floquet Hamiltonian [78, 81].

For the analysis, we restrict the images to a square region of 56× 56 pixels centred around zero
momentum, k= 0, where 56 pixels corresponds to the length of a reciprocal lattice vector (figure 1(c)). The
images are furthermore individually normalised to the interval [0, 1]. In total, we use 10 436 images with
varying shaking phases, shaking frequencies, and micromotion phases with just a few images per parameter.
While supervised learning often requires an additional large training data set of parameters, which allows for
labelling, the unsupervised methods discussed below can identify phase transitions using data
homogeneously sampled across the parameter space alone.

2.2. Machine learning methods
In the various machine learning applications of this article, we use deep neural networks (NNs) composed of
combinations of fully connected and convolutional layers [82]. After each layer, the output is processed by a
non-linear activation function, which in this work is mainly the so-called rectified unit function
ReLU(x) = (0 if x⩽ 0;x if x⩾ 0) or its variations (e.g., leaky ReLU [83]). The archetypical task of an NN is
supervised learning, where the network output youti is trained to approximate a desired label yi for every
input xi of the datasetD = {x,y}. In order to achieve this task, we define a loss function li = l(youti ,yi) that
captures the success of this endeavor. Training then comes down to minimising the total loss function
L= 1/N

∑N
i=1 li with respect to the trainable parameters {Λ} of the deep NN. The most commonly used loss

functions are mean square error and binary cross-entropy. This high-dimensional optimisation problem can
be tackled using gradient descent, where the parameters {Λ} are iteratively shifted in the direction of the
negative gradient, i.e. ω → ω−α∇ωL, where α is the so-called learning rate and a hyperparameter. Here, we
mainly use more involved gradient-based optimisation strategies such as adaptive moment estimation [84]
in order to speed up the training process.

In this work, we employ a special NN architecture called an autoencoder (AE) [85–87]. An AE is
composed of two successive deep NNs, called the encoder and the decoder, as presented in figure 2(a). The
neurons z at the output of the encoder are called the bottleneck neurons and the dimension of this so-called
latent space is typically chosen to be smaller than the input space. The task of an AE is to find an efficient
compression of the data input through the encoder at the bottleneck, from which the decoder is able to
reproduce the original input xi at the output stage youti . The loss function l(xi,youti ) is therefore defined
between the input data and the output of the AE, and there is no need for labelled data. In this work, we
found it sufficient to use the mean squared error total loss function, LMSE(xi,youti ) = 1

N

∑
i |xi − youti |2. AEs

are typically used in the context of unsupervised learning for tasks such as dimensionality reduction or
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anomaly detection. We will later use the success of this compression by looking at the loss L to differentiate
between the phases of the phase diagram in section 3.5. Finally, an AE can also be trained in a supervised
way, given a series of inputs associated to their corresponding outputs. Such a supervised method has
applications in image denoising or colourisation [88–90].

To improve stability for data transformation, we also employ so-called variational autoencoders (VAEs)
[91, 92]. The key difference with respect to the previous architecture is the introduction of an engineered
regularisation at the bottleneck. Instead of encoding the input x into a feature z(x) in the latent space, it is
encoded into a probability distribution p(z|x). A feature z is then sampled from p(z|x) to be passed to the
decoder. This introduces two main advantages. First, the feature space is regularised such that neuron
activations at the bottleneck are more interpretable [93]. Second, in this way, we can generate new data after
training by sampling at the bottleneck. However, we use the VAE here to gain more stability in the
transformation of experimental data. Additionally, one can introduce a question neuron, that is, an extra
input neuron that feeds directly into the bottleneck (see figure 2(a)). The information provided there can be,
for example, a physical parameter corresponding to the image we provide. We will later use VAEs to
post-process the data to a fixed micromotion phase.

The influence function [94, 95] is an interpretability method that can be understood as a numerically
feasible approximation of leave-one-out (LOO) training, as presented in figure 2(b). LOO training consists
of retraining the model after removing a single training point and checking how this changes the test loss
connected to the prediction on the chosen test point. If the prediction got worse (better), i.e., the test loss got
larger (smaller), the removed training point was a helpful (harmful) one. However, such an analysis with
LOO training is prohibitively expensive because, for the full picture, it requires the number of training
procedures to be equal to the training dataset size multiplied by the number of chosen test points. Instead,
the most complicated step in the numerical approximation, i.e., influence functions, consists of a single
computation of Hessian’s inverse of the training loss with respect to the model parameters.

An influence function estimates the influence that a single training point has on a prediction made on a
single test point. In this paper, we apply it to a convolutional neural network (CNN) trained in a supervised
way. An analysis of the most influential points indicates which data features are dominant in the model’s
predictions. We use this property in section 3.3. Moreover, we interpret training points that are similarly
influential to a particular prediction as similar. In this way, the influence functions’ values, I , provide the
notion of similarity found by a network trained in a given problem. Thanks to this property, they allow
distinctive similarity regions to be found within the same class [42], which indicates improper labelling and
proves useful in section 3.6. Analysis of which training points the model regards as similar and which data
features are dominant in the model’s predictions increases the model’s interpretability. The influence
function values, I(xtrain,xtest), can only be compared for fixed test points and various training points within
the same model. Therefore, we need to fix a test point whenever we calculate a set of I for similarity analysis.

All the machine learning techniques were implemented using NumPy, PyTorch, and Tensorflow [96–98].
The specifics of the architectures with reproducible code for all performed tasks can be found in our
notebooks [99].

3. Results

3.1. Latent-space interpretation of AEs
As a first step, we produce and analyse a low-dimensional representation of the data in the latent space of an
AE formed by the activations of the bottleneck neurons. AEs are important tools for unsupervised learning
[100]. An AE consists of several convolutional layers and a fully connected bottleneck formed by two neurons
(figure 3(a)). We choose a 2D latent space to create an easy-to-understand visual representation of the given
samples. The complete implementation details can be found in our notebooks [99]. We checked that
choosing more dimensions in the latent space does not lead to an improvement. The AE is trained on the
complete dataset.

The two-dimensional latent-space representation of all images yields a dense cloud of data points
without any apparent clustering (figure 3(b)). The picture becomes clearer when we restrict the data to fixed
shaking phases, i.e., vertical cuts through the phase diagram (figures 3(c) and (d)). The data then lie on
elliptical structures whose radii are related to the shaking frequency. For further analysis, we fit an ellipse
using direct least-squares fitting [101] and perform a coordinate transformation to extract the elliptical
coordinate radius r and azimuthal angle θ measured from the major axis of the fitted ellipse.

The azimuthal angle can be clearly connected to the micromotion phase, showing a linear dependence
(figure 3(e)) for a shaking phase of φ= 90◦. The same dependence can also be seen with the azimuthal
coordinate of the centre of mass of the raw images, which provides a direct connection between the
time-of-flight images and the latent space. See appendix A for further details. We furthermore explore
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Figure 3. Bottleneck analysis. (a) Sketch of the AE with two bottleneck neurons, which is trained to reproduce the entire dataset.
(b) Activations of the two bottleneck neurons form the latent space, in which each point corresponds to one image. In the scatter
plot of all data, the Chern number is colour coded according to the numerics, illustrating that the data does not cluster according
to the Chern number in latent space. (c), (d) Analysis of single cuts through the phase diagram, i.e., of data with fixed shaking
phases of (c) φ=−90◦ and (d) φ=−45◦. The data form rings in latent space and are fitted by an ellipse (red line), which forms
a new coordinate system with an azimuthal angle θ measured relative to the longer half axis and a radius r, as indicated by an
arrow. (e), (f) Analysis of latent space in elliptical coordinates. (e) The azimuthal angle θ is linearly related to the micromotion
phase for φ= 90◦ of the individual images and is independent of their shaking frequency. (f) The mean radial coordinate for a
given shaking frequency traces out a monotonously decreasing curve with no clear signature of a phase transition and displays
three plateaus in accordance with the phase boundaries. The error bar is the standard deviation taken by averaging over the
images with a given shaking frequency. The plots for other shaking frequencies look similar. This association with micromotion
means that latent space can be interpreted, but also that micromotion is the dominant feature hiding the possible signatures of
topological phase transitions.

possible information hidden in the radial coordinate (figure 3(f)). The mean radius decreases with shaking
frequency with some signs of plateaus, but without a sufficiently clear separation as the shaking frequency
changes to make a prediction of phase transitions. The latent space representation can thus be physically
interpreted via the micromotion, but it cannot provide an identification of the topological phases. We
attribute this to the dominance of the micromotion, which we try to eliminate in the following section 3.2.

3.2. Data post-processing to the desired micromotion phase
In Floquet systems, micromotion poses an additional challenge for identifying phase transitions. We find
that all attempts to apply unsupervised machine learning methods fail for data with varying micromotion
phases. In contrast, as we show in this article, unsupervised machine learning is successful if all images have
the same micromotion phase, i.e., the centre-of-mass displacement is in the same direction. Changes in the
micromotion phase induce different graphical patterns, including the moving centre of mass, which seems to
dominate the models’ predictions. The studied experimental data were obtained by sampling various
micromotion phases. Therefore, we need to post-process them to the desired single value of the micromotion
phase. We show that this can be accomplished by machine learning techniques based on VAEs, which are
powerful tools for data transformation and generation [91, 92]. Our architecture uses an additional question
neuron in the bottleneck, as sketched in figure 2(a), which has previously been proven successful in
identifying relevant physical properties [39]. Here, we use an additional question neuron for supervised
training of the VAE. The challenge addressed here is related to tasks such as fringe removal in absorption
imaging [102], or the removal of timing jitter in pump-probe experiments [103], but we believe that our
method based on VAE is very broadly applicable to post-processing to obtain the desired sampling in
different experimental scenarios.

The encoder of the VAE consists of several convolutional stages and several layers of fully connected
neurons. The last layer of the encoder has 26 fully connected neurons, thus the latent space covers 13
uncorrelated Gaussian distributions, each defined by its mean and log variance. The decoder also has several
fully connected layers followed by a few transposed convolutional stages. The first fully connected layer is
also attached to the input of the question neuron. In total, the AE has over three million trainable
parameters. The complete implementation details can be found in our notebooks [99]. To optimise the
hyperparameters of our AE, we use the hyperparameter optimisation library Optuna [104] and test over
60 000 different network architectures. To identify the best working network, we use the structural similarity
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Figure 4. Post-processing data to the desired micromotion phase using a VAE with an additional question neuron. (a) Example
images at shaking frequencies of 5.8 kHz and 7.4 kHz and a shaking phase φ= 90◦ for different micromotion phases ϕ
illustrating the motion of the centre of mass with the micromotion phase. (b) The same example images as in (a), rephased by the
variational autoencoder to a micromotion phase of ϕ0 = 0.0 show a centre-of-mass position that is only weakly dependent on the
original micromotion phase ϕ. (c) The azimuthal coordinate of the centre of mass of the original images as a function of the
shaking phase shows a complicated dependence. (d) The azimuthal coordinate of the centre of mass (θCoM) of all images forms a
narrow band and is only dependent on the shaking phase, but not the original micromotion phase. This dependence on the
shaking phase is similar to the dependence of the data for the actual micromotion phase ϕ= 0.0 before rephasing (dark blue
points in (c)). The comparison of the distribution of azimuthal coordinates of the centre of mass in (c) and (d) illustrates that the
rephasing of the micromotion was successful. The micromotion phase of the processed data ϕ0 = 0.0 is controlled by an
additional question neuron in the bottleneck of the VAE (inset in (d)).

index [105] as a measure of performance. For each point in the phase diagram with a fixed shaking frequency
and shaking phase, we took several images with different micromotion phases by varying the hold time.
Taking these images as a new dataset, we select all combinations and permutations of images for a fixed
shaking frequency and shaking phase and calculate their micromotion phase difference∆ϕ= ϕoutput−ϕinput.
Thus, the dataset includes 63 050 image pairs with a given∆ϕ. Therefore, in contrast to the other AEs we
employed in the context of this paper, the input and output are different for the VAE. For validation
purposes, we randomly choose 10% of the dataset and hide it from the network during training. We train
with one image as the input, which we refer to as the input image, and one image with the same shaking
frequency and shaking phase but a different micromotion phase as the output; the micromotion phase
difference is the input for the question neuron. Samples of the original images are given in figure 4(a). After
training, we use the VAE to transform all the original images in the dataset to a micromotion phase of
ϕ0 = 0.0 by choosing their corresponding micromotion phase, but with an opposite sign, as the input for the
question neuron. The post-processed images with a single micromotion phase are similar to the original
data, except for some noise removal and a squeezing of the distribution of pixel values to a range of 0.3–0.7,
which we attribute to the non-linear activations in the network (figure 4(b)).

Because the micromotion is directly related to the centre of mass of the images, one can see the success of
the post-processing in the example images in figure 4(b): after the micromotion is set to a fixed value, the
images with different micromotion phases look very similar and have the same direction of displacement of
the centre of mass. This is further confirmed by a comparison of the distributions of the azimuthal
centre-of-mass coordinates for all images before and after rephasing (figures 4(c) and (d)). The highlighted
blue data in (figure 4(c)) are the centres of mass for the micromotion phase ϕ= 0.0. The narrow distribution
in (figure 4(d)) shows that the rephasing was successful. For the identification of phase transitions using
unsupervised machine learning discussed below, it is important that we use the post-processed data with a
single micromotion phase.

3.3. Confirming the post-processing to a desired micromotion phase with influence functions
To provide further evidence that the post-processing described in section 3.2 was successful, we confirm it
using the influence functions introduced in section 2.2. Influence functions provide an interpretation of the
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Figure 5. Confirming the post-processing to a desired micromotion phase with influence functions. Panel (a) presents the phase
diagram with theoretical boundaries between phases and with the cut at a shaking phase of−90◦ marked with a black line, which
is analysed on the right. Panels (b) and (c) show the colour-coded influence function values for all the training points marked
with dots and for the same test point (marked with a black cross) for a single cut at a phase of−90◦ across the shaking frequency
before and after post-processing. The five most helpful (harmful) training points are marked with red (blue) diamonds and they
can overlap. (b) The most influential (both helpful and harmful) training points are the points with the shaking frequency and the
micromotion phase closest to the test point. (c) After fixing the micromotion phase, the most influential points are distributed
across various original micromotion phase values, indicating the successful removal of this property, which now is ignored by the
CNN.

machine learning model, by indicating which training points are influential for a chosen prediction. Analysis
of the most influential examples can reveal the characteristics that impact the machine learning predictions.

First, we train a convolutional neural network (CNN) in a supervised way to classify original images with
various micromotion phases. Instead of analyzing the whole 2D diagram, we only consider a single cut at the
fixed shaking phase of−90◦, which simplifies the visualisation of the results without changing them. Within
this single cut, the Chern number of the system changes from 0 to -1 and back to 0 with an increase in the
shaking frequency. The labelled training data then only contain two phases (C= 0 and C=−1). To avoid the
influence of experimental imperfections, we exclude data close to the theoretically predicted phase
transitions. Using the trained CNN, we calculate the influence functions determining how influential the
whole training dataset is for the prediction chosen to be in the transition region. The results are presented in
figures 5(b) and (c); the black cross indicates the test point, and dots represent the training data and their
colour-coded influence function values. The colours vary from red, for helpful training points, through
green for the least influential (ignored), to blue for harmful.

We see in panel (b) that the most influential (both helpful and harmful) data for the chosen prediction are
those with both the most similar shaking frequency and micromotion phase. Learning the shaking frequency
is to be expected, as it is the parameter governing the phase transition. However, while the CNN also regards
the micromotion phase as influential when making a prediction, we know that this property is physically
irrelevant for the transition. The micromotion phase is an intrinsic property of the Floquet realisation of the
topological Hamiltonian, but does not change the topology of the effective Floquet Hamiltonian.

We perform an analogous analysis for the post-processed training data, i.e., with the micromotion phase
removed. Panel (c) in figure 5 shows that the most influential points are now randomly distributed along the
original micromotion phase axis. This tells us that the CNN no longer sees this parameter as influential and
confirms that the data were successfully post-processed to a constant micromotion phase.

We note that when training on data with or without the micromotion, in both cases, the validation and
test accuracy of the trained CNN are similar. Interestingly, this means that in this setup, the predictive power
of the network is not impacted by learning a quantity which is physically irrelevant.

3.4. Clustering in latent space
In the following sections, we apply different unsupervised machine learning methods to the post-processed
data with a constant micromotion phase and compare their performance. We start with a method based on
the clustering category, which identifies clusters in some low-dimensional representation of the data as
different phases. Specifically, we employ the same convolutional AE as in section 3.1, but it is now applied to
the post-processed data.

The latent-space representation of the complete dataset is shown in figure 6(b). The data are colour
encoded according to the theoretical predictions for the Chern number. It appears that different topological
classes tend to form ring structures in the 2D latent space. As in section 3.1, we now restrict ourselves to
single shaking-phase cuts. Figures 6(c) and (d) show the latent spaces for two such cuts, and we observe three
main clusters related to three frequency regimes.

By choosing k-means clustering, a standard method for solving clustering problems, it is possible to
automate the clustering process of the different latent space representations of the observed image data. We
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Figure 6. Bottleneck analysis of rephased data. The bottleneck analysis with a simple AE (sketched in (a)) for the data after
rephasing to sampling of a fixed micromotion phase. (c), (d) The analysis of single cuts through the phase diagram, i.e. of data
with a fixed shaking phase of φ=−90◦ in (b) and φ=−45◦ in (c), shows significant clustering according to the shaking
frequency (colour coded). The dotted lines guide the eye to separate the different clusters found by the k-means algorithm. The
arrows next to the colour bar mark the theoretically expected phase transitions. (e) The cluster analysis of the latent space. A
k-means clustering analysis for k= 3 clusters shows that the data are indeed clustered according to the shaking frequency. There
are several values for each shaking frequency for the different original micromotion phases, which mostly lie on top of each other
in the plot. (f) Ordering the three clusters with increasing frequency and combining the data from all cuts yields a topological
phase diagram, which is in reasonable agreement with the numerical prediction (blue and red lines), but does not distinguish
between C= 1 and C=−1.

use the k-means functionality of Scikit-learn [106] and set the number of clusters to three and the maximum
number of iterations to 500. All other parameters are set to their standard values according to the
documentation. We tried different random seeds to prove stability. The results of the cluster analysis are
shown in figures 6(e) and (f).

This allows one to predict phase boundaries in good agreement with the theoretical predictions given by
the dashed lines. The slight shift to higher frequencies is in accordance with all other methods and is
explained in section 2.1. Evaluating the data for all shaking phases allows reconstructing the complete 2D
Haldane phase diagram shown in figure 6(f).

The procedure of separately analysing vertical cuts through the phase diagram is fundamentally unable to
distinguish between the C= 1 and C=−1 phases for positive and negative shaking phases. Furthermore, a
similar analysis of the horizontal cuts along constant shaking frequencies throughout the phase diagram does
not produce clustering. Therefore, further methods are required to fully identify the topological phases.

3.5. Anomaly detection scheme
We followed the approach outlined in [18] and use an unsupervised learning scheme called anomaly
detection to map out the phase diagram in a few training iterations. We use a convolutional AE, similar to the
network described in section 3.2. The network consists of an encoder and decoder, each made of two
convolutional layers, with a fully connected bottleneck of 50 units. For full details of the model and the
process, we refer the interested reader to [99], where all the steps described in this section are exactly
reproduced. The idea is as follows: We start by defining a region of the phase diagram in which we trained the
AE to encode and decode the images with a low mean-squared error LMSE(Ain,Aout) between the input and
output images Ain,Aout ∈ R56×56. The network learns the characteristic features of the phase that the images
were taken from, and fails to reproduce images from the other phases. By looking at the loss for all images
after training in only part of the phase diagram, we distinguish between the phase it has been trained on and
the remaining phases via different plateaus of the loss function. Furthermore, by fitting a sum of tanh
functions to the loss curve as a function of the shaking frequency, we obtain a phase boundary. We then
repeat this process by training in the region of high loss from the previous training round until we find all
boundaries.

We show this process in figure 7, where we start by training in the low-frequency regime (Training 1). We
use all values of the shaking phase from [−180◦,180◦] and small shaking frequencies of up to 5.5 kHz, as
indicated by the cyan rectangle. We identify three different plateaus in the loss, between which we obtain two
boundaries. As seen in panel 1(b), where we take a single cut of the phase diagram at−90◦, the different
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Figure 7. Anomaly detection scheme: we start by training in the topologically trivial phase (Training 1). Due to the symmetry in
the shaking phase, we use all angles from [−180◦,180◦] and small frequencies up to 5.5 kHz, as indicated by the light blue box in
(a). Panel (b) shows a single cut at the shaking phase of−90◦, where we can see two plateaus which we identify with the
topological non-trivial and trivial phases, respectively. Training 2: we continue by training in the region of highest loss in the first
iteration for high frequencies. From these two training iterations, we can already narrow down the two boundaries in the phase
diagram. Training 3 completes the overall picture and confirms the phases mapped in Training 1 and 2.

Figure 8. Phase boundaries drawn from four training iterations of anomaly detection in figure 7, separating three different
phases, which we identify with the topologically trivial and non-trivial phases. The boundaries obtained from the different
training iterations are consistent with each other.

phases make up plateaus. We therefore fit a tanh function in the relevant parameter region to estimate the
boundaries, as indicated by the grey lines.

We continue the process and train in the high-frequency regime, where the first iterations yielded the
highest loss. As seen in Training 2 (figure 7), we find a reverse picture with a clear boundary slightly above
the theoretically predicted transition. This boundary from Training 2 nicely coincides with the second
boundary from Training 1. To complete the picture, we also train in the intermediate-frequency regime,
which yielded a higher loss in the previous training iterations. Here, the training region is significantly
smaller, yet the results still match nicely with the previous training iterations. We stress that the three training
procedures are independent. Therefore, the good agreement of the phase boundaries in figure 7 is a strong
indication of the method’s validity. Note also that generally, the results are robust concerning the size of the
training region in frequency. We show this in figure 12 in appendix C. With this method, the images provide
sufficient information to separate the different phases and map out the phase diagram. We present the
predicted diagram in figure 8. We note that with this method, it is not possible to differentiate the non-trivial
topological phases with Chern numbers of 1 and−1, because the trained compression does not generalise
well in the shaking phase parameter. We provide further details in appendix C. In the following section, we
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Figure 9. Analysis of data similarity within three anomaly-detected phases with influence functions. The upper row shows the
phase diagrams with the colour-coded influence function values for all training data and the prediction for the test point marked
with a black cross. The test points belong to (a) the low-frequency, (b) intermediate-frequency, and (c) high-frequency phases.
The lower row presents the influence function values from the single cut through a corresponding phase diagram above at the
fixed shaking frequency, fsh. Panels (a) and (c) show quite uniform similarity patterns, while (b) suggests the existence of an
additional phase. Note the use of a symmetric logarithmic scale. We mark theoretically predicted boundaries with continuous
blue and green lines. White pixels correspond to a lack of available training data.

overcome this shortcoming and complete the phase diagram, i.e., we separate the two topological regions by
employing the influence functions. We observe that the transition between intermediate and high
frequencies for all three training rounds is slightly above the theoretically predicted transition, which is due
to a mismatch between theory and experiment, as discussed in section 2.1.

3.6. Analysis of data similarity within three phases with influence functions
After obtaining the phase boundaries from the anomaly detection scheme, as described in the previous
section, we analyse how similar the data are within the three distinguished phases. Such an analysis can not
only confirm the predictions of unsupervised machine learning schemes but also reveal the existence of
additional phase transitions. To this end, we train a CNN on the post-processed experimental data, i.e., with
a single micromotion phase, with labels assigned by the anomaly detection scheme. Therefore, we have three
labels corresponding to the low-frequency, topological, and high-frequency phases. We employ influence
functions, described in section 2.2, to analyse which training data are influential for a given prediction.
Similarly influential training data{xtrain}, with similar influence function values, I(xtrain,xtest) for a
particular test point, xtest, can then be interpreted as similar from the machine learning model’s point of view
for a given problem.

To analyse the similarity of the training data, we need to compare I(xtrain,xtest) and therefore fix the test
point for which I(xtrain,xtest) is calculated. In figure 9, we plot three sets of I(xtrain,xtest) calculated for all
training data and three different test points: one is located in the low-frequency regime (panel (a)), the
second in the intermediate-frequency regime (panel (b)), and the final one in the high-frequency regime
(panel (c)). Each element of the phase diagrams in the upper row indicates a colour-coded I value for the
corresponding test point marked with a black cross. If an element corresponds to more than one training
point (if more measurements are performed for a given frequency and shaking phase), we then plot the mean
of I(xtrain,xtest). The red (blue) colour indicates the most helpful (harmful) training points for a given
prediction. White dots correspond to the lack of available training data. The lower row of figure 9 contains
the mean of I(xtrain,xtest) for a single cut across the phase diagram for a fixed shaking frequency, fsh. The
error bars represent the standard deviation, which is non-zero for all shaking phases for which multiple
measurements were taken.

In panel (a), we see that the low-frequency training data are all quite similarly influential for the model,
while predicting that the black cross test point belongs to the same low-frequency phase. The uniformity in
question is also clearly visible in the cut through the phase diagram in the lower panel of figure 9. Apart from
a single I(xtrain,xtest) with a large variation, indicating experimental outliers in the training set, the similarity
pattern formed is quite uniform. Note, however, the symmetric logarithmic scale for I . When ignoring
outliers, the I values span almost one order of magnitude. The lowest I values of around 5× 10−6 are
located in the negative shaking phase, and the largest I values of around 3× 10−5 are for training points
which have a positive shaking phase similar to xtest. This tells us that the shaking phase is an influential factor

11



Mach. Learn.: Sci. Technol. 2 (2021) 035037 N Käming et al

in the predictions for the low-frequency phase. However, it is not a determining one. Otherwise, the largest I
values would be much more localised along the shaking phase axis. We also note that the I values always
highlight the boundaries between phases, for two reasons. First, the data around the phase transitions are
usually the most confusing for the model. They are labelled as belonging to either of the phases, being, at the
same time, non-representative of any phase. The second reason is of a purely numerical nature. Regardless of
whether boundaries are placed in accordance with the physical ones, the data around the boundaries play a
unique role in the training, as they contain the most important information for the model. In general, we
expect that the confusing phase transition regions, indicated by large I values in the experimental data
should be broader, compared to those of numerical studies [42]. This is due to the fact that the experimental
system is finite and inhomogeneous, and therefore, the phase transition is intrinsically broadened.

Panel (c) shows even more uniform behaviour. It contains I values for the test point localised in the
high-frequency regime. What may seem surprising is that almost all I values are practically zero. This means
that none of the training points is of significant influence when making the chosen prediction. This is
because the prediction at the test point from panel (c) has an extremely high certainty, which has an impact
on the I values. In fact, the |I(xtrain,xtest)| values are proportional to the uncertainty of the prediction made
on xtest. When the prediction’s uncertainty is very low, the I values are also minimal.

Panel (b) is analogous to previous panels, but this time, the test point for which the I values are
computed is localised in the intermediate-frequency regime (which we know contains two topological
phases). A striking feature of panel (b) is the lack of uniformity in the intermediate-frequency regime, which
is clearly visible in the lower plot of panel (b), which contains I values for the single cut through the phase
diagram for a fixed frequency of 6.6 kHz. In between the two plateaus, i.e., around the shaking phases of 0
and 180◦, there are significant dips in the influence functions’ values, which reach negative values. They show
that the training data in this part of the diagram are different enough to be harmful to the analysed
prediction.
While they are quite different, they are misleading for the model, as they are labelled as being the same
(as belonging to the topological phase). This is analogous to the reason why influence functions always
highlight boundaries between phases. This leads us to the conclusion that within the anomaly-detected
intermediate-frequency regime, there is an additional boundary separating two more phases, which we know
to be the C=+1 and C=−1 phases. Another observation supporting this conclusion is that there are two
similarity plateaus on the negative and positive sides of the shaking phase, separated by the detected
boundary. They are clearly visible in the lower plot of panel (b). The average values of the two plateaus differ
by almost an order of magnitude, indicating two distinct patterns. Simultaneously, these patterns are more
similar to each other than to the low- or high-frequency phases, which suggests the similar character of the
two phases detected in the intermediate-frequency regime.

The similarity analysis described above reveals the existence of two phases within the anomaly-detected
topological phase. We note that this analysis is vastly simplified by removing the micromotion phase from
the time-of-flight images. The results from section 3.3 show that the micromotion phase was a very
influential factor for the trained CNN before post-processing. Therefore, the analysis would need to include
the impact of the micromotion phase on the CNN’s predictions.

4. Conclusions

In this article, we have applied different unsupervised machine learning methods to identify topological
phase transitions in experimental data of a Haldane-like model realised with ultracold atoms. The
topological phase diagram of the elliptically shaken hexagonal lattice hosts topologically non-trivial phases at
an intermediate shaking frequency and trivial phases for both low and high shaking frequencies.
Furthermore, the sign of the Chern number changes with the sign of the shaking phase, i.e., the orientation
of shaking, giving rise to two distinct non-trivial phases.

A necessary step for successful unsupervised learning is to fix the micromotion phase inherent to the
Floquet realisation of the topological phases via a VAE with a question neuron. This post-processing of the
experimental data to the desired sampling demonstrated here is an exciting tool in its own right. When
generalising such a post-processing procedure to data sets, where known physical observables are invariant
under the parameter which is removed, it would be interesting to test whether these observables stay the
same when evaluated using the pre- and post-processed images.

Both a clustering analysis in an appropriate low-dimensional representation of the data and anomaly
detection in the loss function correctly identified the three regions as a function of the shaking frequency.
The correct identification of the two regions with opposite signs of the Chern number was only possible by
combining this information with insights from an influence function applied to the supervised training of
the incomplete phase diagram. In total, the full phase diagram, which can also be identified via supervised
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machine learning on labelled data, can be obtained in a fully unsupervised way by combining the different
methods.

The successful identification of the phase diagram demonstrates that unsupervised machine learning can
correctly identify phases, even for noisy data, and despite the finite temperature of the system. In the future,
these methods can be applied to strongly correlated systems to determine corrections to numerical
predictions or to exotic quantum many-body systems with unknown phase diagrams or hidden orders
[26, 27] to support the interpretation of the data and to guide the experimental exploration of the parameter
space.
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Appendix A. Centre of mass andmicromotion

In figure 10, we show the dependence of the azimuthal coordinate of the centre of mass on the micromotion
phase. For circular shaking, i.e. a shaking phase of±90◦, the centre of mass moves in a circular fashion
yielding a linear dependence between the azimuthal coordinate of the centre of mass and the micromotion
phase. For linear shaking, i.e. a shaking phase of 0◦ and 180◦, the centre of mass moves along a diagonal line
yielding a constant azimuthal coordinate of the centre of mass at±45◦, with a phase jump of 180◦ due to
small disturbances in the experiment, forcing an exchange of the long and short axes in the fitting scheme of
the ellipse. Other shaking phases interpolate between these two behaviours. In conclusion, the movement of
the centre of mass of the momentum distribution follows the shaking trajectories, as expected.

13

https://doi.org/10.5281/zenodo.4700379
https://doi.org/10.5281/zenodo.4700379


Mach. Learn.: Sci. Technol. 2 (2021) 035037 N Käming et al

Figure 10. Dependence of the azimuthal coordinate θCoM of the centre of mass and the micromotion phase ϕ. The dependence
can be explained by the elliptical shaking. For the shaking phases φ= 0,±180, the shaking is linear, thus the cloud can only be
displaced in k-space in the direction of the shaking. For a shaking phase of φ=±90, the shaking is circular and thus the
dependence is linear. The sign of φ decides the direction of shaking, which is encoded in the phase jump and the direction
of the slope.

Figure 11. PCA analysis of the ToF images rephased to a fixed micromotion phase. From left to right: PCA components 1, 2, 6,
and 8 which have been arbitrarily selected. To plot all other components, see the notebooks in [99]. In the upper row, a cut along a
shaking phase of 90◦ is plotted. The error is the standard deviation of the different values for the component for the given shaking
frequency. The theoretical predictions for the phase transitions are given by dashed lines. In the lower row, the averaged
components are plotted in the Haldane phase diagram fashion.

Appendix B. PCA analysis

In addition to the methods in the main text, we also used principal component analysis on the processed
data. In figure 11, we selected four components of this analysis. The different principle components clearly
show features that correspond well with the theoretical predictions, such as sharp local minima at the
expected phase transitions. However, the data also show features that are not related to phase transitions,
such as a strong dependence on the shaking phase in the trivial regions. Therefore, the data do not provide a
clear recipe for identifying the topological phase transitions in a completely unsupervised way. This is
particularly true for the choice of the components to be analysed.
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Figure 12. Consistency checks for the obtained phase boundaries for varying sizes of the training region for all three phases
(a)–(c). We see that the results are consistent and that changing the training region size does not shift the obtained boundaries.

Figure 13. 1(a)–(c) Training with the small box and testing on normal images. The AE does not generalise well within the same
phase in the shaking phase parameter. 2(a)–(c) Same AE as in (1), but now tested on flipped images. The loss map is qualitatively
mirrored around the phase= 0◦ axis. 3(a)–(c) Now both training sessions in testing are performed on a dataset consisting of both
the normal and flipped images.

Appendix C. Anomaly detection in shaking phase direction

We perform a consistency check to confirm that the method is well behaved in the frequency parameter. For
this, we train with different sizes of the training region in the respective three phases. As seen in figure 12, the
obtained results are consistent, and we are confident about the three obtained boundaries presented in the
main text. In panel (c), there are discrepancies inside the blue-detuned trivial phase where we performed the
training. However, the plateau’s onset for the topologically non-trivial phase is consistent for all four training
region sizes. We find that the method does not generalise well when performing the same analysis in the
shaking phase parameter. We show in figures 13 1(a)–(c) how, for smaller boxes in the shaking phase-
parameter, the network has problems reproducing images from the same phase but with different and unseen
shaking phase parameters. This is why we cannot differentiate between the non-trivial topological phases
with Chern numbers of+1 and−1. We use the same network and test it on flipped images in figures 13
2(a)–(c). Here, flipping corresponds to the phase-space transformation (kx,ky)→ (−kx,ky). As expected, this
operation physically corresponds to changing the shaking phase φ to−φ and should invert the sign of the
Chern number. In 2(a)–(c) we train and evaluate the network on a dataset in which we use both normal and
flipped images. In 3(a) and (b) we see that we now obtain the expected behaviour, i.e. generalising in the
whole red-detuned trivial phase, and separating the Chern number+1 and−1 phases. However, in 3(c), the
network still does not generalise well in the trivial blue-detuned phase. Therefore, we conclude that with this
architecture, we cannot separate the two topologically non-trivial phases from each other.
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Figure 14. Bottleneck analysis of rephased data with varying numbers of clusters as the input parameter for the k-means
algorithm. (a) Kneeling analysis for three different phase cuts. (b) Number of phase cuts with the best choice of clusters by the
kneeling analysis. (c), (d) The analysis of single cuts with only two clusters as an input parameter to the k-means algorithm
through the phase diagram, i.e. of data with a fixed shaking phase of φ=−90◦ in (b) and φ=−45◦ in (c), shows a significant
clustering according to the shaking frequency (colour coded). The dotted lines guide the eye to separate the different clusters
found by the k-means algorithm. The arrows next to the colour bar mark the theoretically expected phase transitions. (e) The
cluster analysis of latent space. A k-means clustering analysis for k= 2 clusters shows that the data is indeed clustered according to
shaking frequency. However, in contrast to figure 6, k= 2 does not cluster for the lower boundary. (f) Naming the two clusters
increasing with frequency and combining the data from all cuts yields half of the topological phase diagram identifying the
high-frequency phase boundary.

Appendix D. Optimising the VAE

The VAE employed in section 3.2 is optimised using the optimisation framework Optuna [104]. We use the
tree-structured Parzen Estimator for the optimisation. Utilising a median pruner with ten startup trials, eight
warmup steps, and an interval step of two allows a reduction of computing time, since fewer networks have
to be trained until the end. The hyperparameters optimised by the framework can be found in our
notebooks [99].

In total, we tested over 60 000 different network architectures. For the final Optuna run, we started 33 534
trials; 32 974 were stopped or pruned, since their performance was not significantly better than the average
time of training, and 560 were trained to the end. In total, we spent 6889.6 h on GPU devices for the
optimisation of the VAE. The average training time for the completed training was 11.8 h each. The training
time for the VAE we used for the results in our paper was 10.8 h. We used 26 GPUs (Nvidia RTX 2080Ti and
RTX 3090).

The network architecture we employ in the main text is the best-performing network from the final
Optuna run. We note that it is replaceable by any other network with good performance from the
optimisation run with a similar final loss value. Most of the 560 completed trials result in a similar final loss
value. We analyse the parameter importance according to [107]. We observe a significantly higher parameter
importance of the number of fully connected layers in the decoder. For a complete analysis, see the notebook
appendix_optuna_analysis.ipynb in our supporting material [99].

Appendix E. k-means analysis

The number of clusters used for the k-means algorithm is crucial. We employ a so-called kneeling analysis to
select the most reasonable number of clusters. To find the optimal number of clusters, we run the k-means
algorithm separately with a different number of clusters as an input parameter for each shaking phase cut.
Three examples are given in figure 14(a). The most suitable number of clusters is given by the knee of the
curve. A histogram of the values for the knees extracted for the different phase cuts shows a clear maximum
at three clusters (figure 14(b)). Hence k= 3 is a sophisticated choice for the number of clusters. As a
reference, we run the analysis for k= 2, analogously to section 3.4 (figures 14(c)–(f)). A boundary arises for
higher frequencies, but a correct distinction between C=±1 and C= 0 is impossible.
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