
Machine Learning: Science and Technology

PAPER • OPEN ACCESS

Multi-scale tensor network architecture for
machine learning
To cite this article: J A Reyes and E M Stoudenmire 2021 Mach. Learn.: Sci. Technol. 2 035036

View the article online for updates and enhancements.

You may also like
Quantum compression of tensor network
states
Ge Bai, Yuxiang Yang and Giulio
Chiribella

-

Entangled q-convolutional neural nets
Vassilis Anagiannis and Miranda C N
Cheng

-

Mutual information scaling for tensor
network machine learning
Ian Convy, William Huggins, Haoran Liao
et al.

-

This content was downloaded from IP address 223.236.224.249 on 03/07/2023 at 07:42

https://doi.org/10.1088/2632-2153/abffe8
https://iopscience.iop.org/article/10.1088/1367-2630/ab7a34
https://iopscience.iop.org/article/10.1088/1367-2630/ab7a34
https://iopscience.iop.org/article/10.1088/2632-2153/ac2800
https://iopscience.iop.org/article/10.1088/2632-2153/ac44a9
https://iopscience.iop.org/article/10.1088/2632-2153/ac44a9

Mach. Learn.: Sci. Technol. 2 (2021) 035036 https://doi.org/10.1088/2632-2153/abffe8

OPEN ACCESS

RECEIVED

21 January 2021

REVISED

25 April 2021

ACCEPTED FOR PUBLICATION

11 May 2021

PUBLISHED

14 July 2021

Original Content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the title
of the work, journal
citation and DOI.

PAPER

Multi-scale tensor network architecture for machine learning
J A Reyes1,∗ and E M Stoudenmire2

1 Department of Physics, University of Central Florida, University Blvd, Orlando, FL 32816, United States of America
2 Center for Computational Quantum Physics, Flatiron Institute, 5th Avenue, New York, NY 10010, United States of America
∗ Author to whom any correspondence should be addressed.

E-mail: jreyesucf@knights.ucf.edu

Keywords: tensor network, machine learning, dimensionality reduction

Abstract
We present an algorithm for supervised learning using tensor networks, employing a step of data
pre-processing by coarse-graining through a sequence of wavelet transformations. These
transformations are represented as a set of tensor network layers identical to those in a multi-scale
entanglement renormalization ansatz tensor network. We perform supervised learning and
regression tasks through a model based on a matrix product states (MPSs) acting on the
coarse-grained data. Because the entire model consists of tensor contractions (apart from the
initial non-linear feature map), we can adaptively fine-grain the optimized MPS model ‘backwards’
through the layers with essentially no loss in performance. The MPS itself is trained using an
adaptive algorithm based on the density matrix renormalization group algorithm. We test our
methods by performing a classification task on audio data and a regression task on temperature
time-series data, studying the dependence of training accuracy on the number of coarse-graining
layers and showing how fine-graining through the network may be used to initialize models which
access finer-scale features.

1. Introduction

Computational techniques developed across the machine learning and physics disciplines have consistently
generated promising methods and applications in both areas of study. The application of well established
machine learning architectures and optimization techniques has enriched the physics community with
advances in modeling such as recognizing topological quantum states [1–3], optimizing quantum error
correction codes [4], classifying quantum walks [5], and solving partial differential equations [6]. Conversely,
tensor networks, which are well established numerical physics techniques with close connection to physics
principles and used for modeling high-dimensional functions, have begun to be explored more in applied
mathematics and machine learning [7–19]. The benefits of the tensor network approach in machine learning
include the compression of model parameters (i.e. dimensionality reduction) [7, 14, 15], the implementation
of adaptive training algorithms [9], and the possibility of gaining theoretical insights [17, 20].

Generically, a tensor network is a factorization of a very high-order tensor—a tensor with a large number
of indices—into a set of low-order tensors whose indices are summed (contracted) to form a network
defined by a certain pattern of contractions. Such a network can be viewed as a generalization of the
low-rank matrix decompositions familiar to the discipline of applied mathematics.

One of the primary advantages of a tensor network decomposition is that the number of parameters
needed to model the high-order tensor can be exponentially reduced while still approximating the high-order
tensor accurately within many applications of interest [21]. This is particularly evident in the simulation of
quantum many-body systems where tensor networks serve as a foundational tool for describing the system
state vector—which encodes the joint probability of many variables. In this case, the state vector often cannot
be explicitly stored or manipulated because of its exponentially growing dimension with the number of
variables. In similarity to this, certain machine learning approaches, such as kernel learning, also encounter
the problem of high dimensionality when the model involves a large number of data features [22]. In this

© 2021 The Author(s). Published by IOP Publishing Ltd

https://doi.org/10.1088/2632-2153/abffe8
https://crossmark.crossref.org/dialog/?doi=10.1088/2632-2153/abffe8&domain=pdf&date_stamp=2021-7-14
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-6330-9801
mailto:jreyesucf@knights.ucf.edu

Mach. Learn.: Sci. Technol. 2 (2021) 035036 J A Reyes and E M Stoudenmire

Figure 1. Tensor diagrams for the (a) matrix product state (MPS) tensor network, (b) PEPS tensor network, and (c) two-layer
MERA tensor network.

paper, we will focus on utilizing the concepts of tensor network renormalization as a means of accomplishing
a dimensionality reduction on the large parameter spaces found in various classification tasks.

Common tensor network families include the matrix product states (MPSs) or tensor trains [23–26],
projected entangled pair states [21], and the multi-scale renormalization ansatz (MERA) [27, 28]. Example
tensor diagrams defining each of the above mentioned architectures are shown in figure 1. Because tensors
are multi-linear objects, controlled transformations of one tensor network into another are possible through
techniques such as matrix factorization and tensor contraction [18, 29, 30]. We will take advantage of this
capability by utilizing these transformations as an initialization strategy for our model. This will be
accomplished by initially training a model defined through a larger number of MERA coarse-graining layers,
then fine-graining the top tensor train containing the adjustable model weights to reach the desired
architecture.

The specific algorithm we present for training a model for supervised learning and regression
applications is built around three main steps. The first step involves coarse graining to reduce the feature
space representing the data. This is done through a series of wavelet transformations which are approximated
by the layers of a MERA tensor network. The second step is the training of a weight tensor represented as an
MPS and optimized by an alternating least squares (ALSs) algorithm analogous to the density matrix
renormalization group (DMRG) algorithm. In the third step, we show how the weight tensor can be
systematically fine-grained (i.e. back-propagated through the MERA) into a model over a larger set of
features, having initially the same performance, but then being further optimized at the fine scale.

This paper is organized as follows: In section 2, we provide a high-level overview of (1) the wavelet
transformations which are to be encoded into the layers of a MERA, (2) the DMRG algorithm which
provides the foundation for the dimensionally-reduced training protocol, and (3) the MERA tensor network,
which will be primarily used as a tool for dimensionality reduction. In section 3, we detail the methods
involved in encoding the MERA with wavelet layers, and describe our algorithm for training the weights of
the classifier. In section 4, we apply our method to the classification of DCASE audio file data sets and the
linear regression of mean temperature data sets. We conclude in section 5 with a discussion on the
applicability and outlook of our algorithm.

2. Theoretical background

The steps of the algorithm we will explore combine a number of techniques from different fields of study. In
this section we present a brief review of these techniques to aid readers in understanding the motivation
behind combining them together. It is noted that previous works in the physics literature have been similarly
motivated to adapt multi-scale or multi-grid modeling ideas into the tensor network setting [29, 30].

2

Mach. Learn.: Sci. Technol. 2 (2021) 035036 J A Reyes and E M Stoudenmire

Additionally, the application of other hierarchical tensor-network architectures have been previously
investigated in various discriminative and generative tasks [14, 15].

In the following section, we present background for the machine learning tasks we have investigated; we
review the theory of wavelet transformations; we review the MPS tensor network and DMRG algorithm; and
finally, we review the MERA tensor network.

2.1. Learning task andmodel functions
We will be interested in the tasks of regression and supervised learning. Given a training data set of observed
input and output pairs {xj,yj}nj=1, both of these tasks can be formulated as finding a function f(x) satisfying
f(xj)≈ yj to a good approximation. Crucially, out of all functions which fit the input data, f(x) should be
selected so as to generalize to unobserved data. Outputs yj can be vector-valued, but in the case of regression
are more commonly just scalar-valued.

The class of model functions we will optimize have the general form

fW(x) =W ·Φ(x) (1)

whereW is a weight vector which enters linearly. The function Φ is a feature map, which, in general, is
non-linear and maps the input x to a feature vector Φ(x). This class of model functions formally has the
same starting point as the kernel learning and support vector machine approaches to machine learning.
However, in contrast to these approaches, we will optimize over the weightsW without introducing any dual
parameters as in the ‘kernel trick’. To make such an optimization feasible, we represent the weights in a
compressed form as a tensor network.

The feature maps we consider take the form

Φs1 s2 ···sN(x) = ϕs1(x1)ϕ
s2(x2) · · ·ϕsN(xN) (2)

where N is the dimension of the input vectors x, and each index si runs over d values. The local feature maps
ϕmap each input component xi to a d-dimensional vector. The resulting feature map Φ is a map from RN to
a rank-1 tensor of order N, whose indices are all of dimension d. Informally, Φ is a product of vector-valued
functions of each of the input components.

Our goal is to find a suitable weight vectorW∗ that minimizes some appropriate cost function between
the model output fW∗(xj) and the expected output yj over the observed data. The cost function we will use is
the quadratic cost

C(W) =
1

2 n

n∑
j=1

||fW(xj)− yj||2 +λ||W||2 (3)

where the summation is over n training examples and λ is an empirical regularization parameter. Because of
the quadratic form of this function, optimization can be conveniently carried out by efficient methods such
as the conjugate gradient descent algorithm.

2.2. Wavelet transformations
We will be interested in dimensionality reduction transformations which preserve information across scales.
To this end, we consider transformations common to signal processing techniques. In signal processing, the
Fourier transform is a ubiquitous transformation which can be used to take an input signal from the time
domain to the frequency domain. However, there are many instances where a signal is not stationary,
requiring analysis to be done in both the time and the frequency domain. Wavelet transformations are
transformation which facilitate this type of analysis by transforming a signal into the time-frequency
domain [31].

The continuous wavelet transformation of an input signal x(t) is given by

X(τ, s) =
1√
|s|

ˆ
x(t)ψ̄

(
t− τ

s

)
dt (4)

where ψ is themother wavelet which characterizes the transformation, τ is the translation parameter, and s is
the scale parameter.

For discrete signals taken over constant time intervals, the mother wavelet becomes a vector whose inner
product is taken with a subset of the signal x. The integral becomes a summation over the elements within
that subset (neighboring subsets can generally overlap).

3

Mach. Learn.: Sci. Technol. 2 (2021) 035036 J A Reyes and E M Stoudenmire

The two types of discrete wavelet transformations we will use below are the Haar transformation

h(2)i =
x2i + x2i+1√

2
(5)

for i= 0 to i= N/2− 1; and the Daubechies-4 (Daub4) transformation

d(4)i =
3∑

j=0

x2i+jDj (6)

where the coefficients Dj are the elements of the vector

D=

(
1+

√
3

4
√
2
,
3+

√
3

4
√
2
,
3−

√
3

4
√
2
,
1−

√
3

4
√
2

)
. (7)

For both of these discrete transformations the translation parameter is τ = 2. The summation is over two
elements for the Haar transformation and four elements for the Daub4 transformation. These discrete
wavelet transformations can be used to average and rescale the initial signal x from size N to size N/2, while
preserving local information in both the time and frequency domains. The information that is preserved is
that associated with the part of the signal which varies more smoothly with the time index i.

2.3. MPS tensor network and optimization
AMPS or tensor train is a decomposition of a high order tensor into a contracted network order-3 tensors
with a one-dimensional, chain-like structure as in figure 1(a). In traditional tensor notation an MPS
decomposition of a tensorWs1 s2 ...sN can be written as

W s1 s2 s3 ...sN =
∑
{a}

As1
a1A

s2
a1a2A

s3
a2a3 · · ·A

sN
aN−1

(8)

where the factor tensors A
sj
aj−1aj can in general be different from each other.

The key parameter controlling the expressivity of an MPS is the bond dimension, also known as
tensor-train rank. This is the dimension of the internal, contracted indices {aj} connecting neighboring
factor tensors of the MPS. By allowing the bond dimension large enough, an MPS can represent any
tensor [23, 24]. In general, the dimensions of the bond indices vary, in which case the bond dimension of the
MPS as a whole means the maximum over the bond dimensions.

There are many important theoretical results about MPS, such as finding minimal sets of conditions
sufficient to make the parameters of the factor tensors uniquely specified [24–26]. For our purposes, the
most important fact about MPS will be that they are well-suited for modeling functions or processes with
strongly one-dimensional correlations, such as samples of a time-dependent random variable with decaying
correlations. MPS can exactly reproduce long-time correlations which decay exponentially, and can also
approximate power-law correlations to high accuracy [32].

A straightforward but powerful way to optimize a MPS for a given objective is to optimize each of the
factor tensors A

sj
aj−1aj one-by-one, keeping the others fixed. In physics, the adaptive version of this approach is

generally referred to as the DMRG algorithm [33], while in mathematics it is known as ALSs. By sweeping
from the first tensor to the last and then back when optimizing, computations involving the other factor
tensors can be reused, making the approach highly efficient. Another advantage of alternating optimization
is that it can be made adaptive by temporarily contracting over the bond index shared between two factor
tensors. After optimizing the resulting tensor, the MPS form can be restored by an singular value
factorization, introducing a new bond index that can be selected larger or smaller depending on the desired
tradeoff between the quality of the results and the computational cost [9].

2.4. MERA
The MERA is a tensor network whose geometry and structure implements multiple coarse grainings of input
variables. In physics terminology, such a coarse-graining process is known as renormalization [34]. While it
is true that a coarse-graining process could be implemented by a tree tensor network, a tree has the drawback
that information or features processed by different subtrees are not merged until the subtrees meet, which can
happen at an arbitrarily high scale. The MERA architecture accounts for this by including extra ‘disentangler’
tensors which span across subtrees [28, 35]—these are the four-index tensors U shown in figure 2.

Introducing tensors which connect subtrees has the potential to make computations with the resulting
network prohibitively expensive. However, in a MERA the disentangler tensors U are constrained to always

4

Mach. Learn.: Sci. Technol. 2 (2021) 035036 J A Reyes and E M Stoudenmire

Figure 2. Two layers of a MERA tensor network, showing the unitary condition obeyed by the disentanglers U and isometric
condition obeyed by the isometries V.

be unitary with U†U= UU† = 1. Likewise, the tree tensors, or isometry tensors V are constrained to obey
an isometric condition V†V= 1 (yet VV† ̸= 1). These conditions are depicted in diagrammatic form in
figure 2. Under these constraints, computations of the norm of a tensor represented by a MERA (or of
marginals and correlation functions when the MERA represents a distribution) can be carried out with a cost
scaling polynomially in the dimensions of the internal indices of the network.

In this work, we will specifically consider disentanglers and isometries parameterized as matrices with
non-zero elements given as:

U=


1 0 0 0
0 cosθU sinθU 0
0 − sinθU cosθU 0
0 0 0 1



V=

(
1 0 0 0
0 sinθV cosθV 0

)
which will be sufficient to parameterize MERA layers which approximately compute wavelet coarse graining
transformations of input data. We discuss how to choose the angles θU and θV to approximate Haar and
Daubechies wavelets in the next section. The existence of a correspondence between the MERA tensor
network and discrete wavelet transformations was first described by [36, 37].

3. Model and training algorithm

The model function we will now discuss for regression and supervised learning first coarse grains input data
through some number of discrete wavelet transformations, implemented as MERA tensor network layers.
Following this, an MPS tensor network is used to represent the top layer of trainable weights.

After discussing how to train a model of this type, we highlight one of its key advantages: the amount of
coarse graining can be adjusted during training to adaptively discover the number of coarse graining steps
needed to obtain satisfactory results.

3.1. Coarse graining
To reduce the parameter space necessary for training the weights of our classifier, we coarse grain the input
data through a series of wavelet transformations, effectively reducing the size of the data by a factor of two
after each transformation. This is done by first mapping each input data element xi to the vector
|ϕ(xi)⟩= |0⟩+ xi|1⟩, where in this section we use the physics notation that |v⟩ is a vector labeled v. We have
also defined

|0⟩= (1 0)T (9)

|1⟩= (0 1)T. (10)

5

Mach. Learn.: Sci. Technol. 2 (2021) 035036 J A Reyes and E M Stoudenmire

Figure 3. Decomposition of each transformation element D1−4 into the unitaries and isometries of the wavelet MERA. The
complete Daub4 wavelet transformation over data elements x1−4 is given by the contraction over connected indices. Each
transformation is parameterized by θU and θV .

The feature map applied to each data sample is taken to be the tensor product

|Φ(x)⟩= |ϕ(x1)⟩⊗ |ϕ(x2)⟩⊗ ...⊗ |ϕ(xN)⟩ . (11)

This input tensor can be thought of as an MPS of bond dimension 1. As shown in figure 3, this MPS becomes
the bottom layer of a network with the wavelet transformation MERA representing the upper layers. Each
subsequent layer in the MERA is constructed by encoding wavelet transformations into the disentangler and
isometry tensors U and V.

To accomplish the encoding of these wavelet transformations, we first decompose each of the wavelet
coefficients in the set {Di} given in equation (7) into two sequentially applied transformations. Graphically,
if we consider the term xi|1⟩ in each local feature vector |ϕ(xi)⟩ of equation (11) as a ‘particle’ whose state has
a coefficient given by the input component xi, we can trace the path of this particle through the MERA as
shown in figure 3, assigning appropriate transformations to xi as it propagates through the tensors.
Following this construction, one can work out the result of applying the MERA layer to a patch of four
adjacent input tensors, whose dependence on input components (x1,x2,x3,x4) is to leading order:

|ϕ(x1)⟩|ϕ(x2)⟩|ϕ(x3)⟩|ϕ(x4)⟩= (|0⟩+ x1 |1⟩) (|0⟩+ x2 |1⟩) · · ·
= |0⟩|0⟩|0⟩|0⟩+ x1 |1⟩|0⟩|0⟩|0⟩+ x2 |0⟩|1⟩|0⟩|0⟩+ x3 |0⟩|0⟩|1⟩|0⟩
+ x4 |0⟩|0⟩|0⟩|1⟩+ · · · (12)

where the omitted terms are higher-order in components of x, such as x2x4 |0⟩|1⟩|0⟩|1⟩.
From the conditions shown in figure 3, it follows that the result of acting with the MERA layer on this

patch of inputs is, to linear order in the components of x, an output vector

(D1x1 +D2x2 +D3x3 +D4x4)|1⟩ (13)

where now |1⟩ labels the second basis vector of the vector space defined by the tensor indices along the top of
the MERA layer, and the Daub4 wavelet coefficients Di are related to the parameters in the MERA factor
tensors as:

D1 =− sinθU cosθV (14)

6

Mach. Learn.: Sci. Technol. 2 (2021) 035036 J A Reyes and E M Stoudenmire

Figure 4. The tensor diagram for the model we use for classification and regression, showing the case of three MERA layers. Each
input data x is first mapped into a (rank-1) MPS |Φ(x)⟩, then acted on by MERA layers approximating Daub4 wavelet
transformations. At the top layer, the trainable parameters of the modelW are decomposed as an MPS. Because all tensor indices
are contracted, the output of the model is a scalar.

D2 = cosθU cosθV (15)

D3 = cosθU sinθV (16)

D4 = sinθU sinθV. (17)

With the Di chosen to be the Daub4 wavelet coefficients equation (7), this system of equations is easily solved
by setting θU =π/6 and θV =π/12. With this choice of angles, the wavelets have successfully been encoded
into the unitaries and isometries of our MERA and can successively be applied to the initial dataset to reduce
the training parameter space by a factor of two for each layer.

While the above construction guarantees that the action of a MERA layer on the input feature vector
Φ(x) reproduces the wavelet transformation for terms involving up to a single |1⟩ basis vector, such an exact
correspondence no longer holds for terms with two or more |1⟩ basis vectors in the tensor product. It is easy
to show that when the |1⟩ vectors are far enough apart, the wavelet correspondence holds; when the |1⟩
vectors are closer together, there are corrections. However, we simply choose to accept these as a defining
property of our coarse-graining process, since choosing one wavelet family over another is already somewhat
arbitrary. It will be interesting in future work to explore how to make the mapping between wavelets and
MERA layers more precise in the context of coarse-graining data.

Finally, we turn to how we coarse-grain each training sample through the MERA layers efficiently. Recall
that each sample is first converted to a rank-1 tensor (or product state in physics terminology) of the form
equation (11), which we choose to view as an MPS tensor network of bond dimension 1. Applying the first
MERA layer to this MPS in a naive way would destroy the MPS form, making any steps afterward very
inefficient. However, we can proceed using a very accurate, controlled approximation which is to apply the
tensors in each MERA layer one by one, factoring the resulting local tensors using a truncated singular value
decomposition (SVD). This process is closely analogous to time evolution methods for MPS such as
time-evolving block decimation which are well developed in physics [38, 39].

3.2. Training
After each training data sample |Φ(xi)⟩ has been coarse grained through the MERA from size N to
N ′ = N/2L where L is the number of wavelet-MERA layers used, we compute the (scalar) output of the
model by an inner product with the tensor of weightsW at the topmost scale. We choose this weight tensor
to be represented by an MPS:

Ws1 s2 s3 ...sN =
∑
{a}

As1
a1A

s2
a1a2A

s3
a2a3 · · ·A

sN
aN−1

. (18)

We then optimize the cost function in equation (3) by sweeping back and forth through the tensors of the
above MPS, updating each tensor in a DMRG-like fashion [9].

The prominent feature of the optimization is a local update toW by optimizing the MPS tensors at sites j
and j+ 1 together. This is accomplished by constructing

B
sjsj+1

αj−1lαj+1
= A

sj
αj−1αjA

sj+1
αjαj+1 . (19)

7

Mach. Learn.: Sci. Technol. 2 (2021) 035036 J A Reyes and E M Stoudenmire

Figure 5. The local update ofW (MPS) is as follows: (a) select a pair of neighboringW (MPS) tensors as Bjj+ 1, (b) compute the
gradient of the cost over all training examples, (c) update Bjj+ 1, and (d) decompose back into two MPS tensors using a truncated
SVD. This is done for each pair in the MPS, sweeping back and forth until the cost is minimized.

Figure 5(a) shows how the output of the model can be computed by first contracting all of the coarse-grained
data tensors with the MPS tensors not currently being optimized, then with the bond tensor B. The gradient
of the cost function is proportional to the tensor∆B which is shown in figure 5(b). The∆B tensor can be
used to improve B as shown in figure 5(c). In practice, we actually use the conjugate gradient algorithm to
perform the optimization, but the first step of this algorithm is identical to figures 5(b) and (c) for the proper
choice of λ. Finally, to proceed to the next step the MPS form ofW must be restored to ensure efficiency.
This can be done by treating B as a matrix and computing its SVD as shown in figure 5(d). Truncating the
smallest singular values of the SVD gives an adaptive way to automatically adjust the bond dimension of the
weight MPS during training.

3.3. Fine scale projection
As a unique feature of our model, we introduce an additional step which provides the possibility for further
optimization of the weight parameters for our classifier. Once training over the weight MPS has been
completed at the topmost scale, the optimized weights can be projected back through the MERA consisting
of Nd4 layers to the previous scale defined by Nd4−1 layers.

This fine-graining step is done by first applying the conjugate of the isometries of the topmost MERA
layer to each MPS tensor representingW, thereby doubling the number of sites. Next, we apply the conjugate
of the unitary disentangler transformations to return to the basis defining the previous scale. Finally, to
restore the MPS form of the transformed weights, we use an SVD factorization to split each tensor so that the
factors each carry one site or ‘feature’ index. All of these steps are shown in figure 6(b).

The projection of these trained weights onto to the new finer scale serves as an initializationW ′ for layer
Nd4−1. At this step, the coarse-grained data previously stored at this finer scale are retrieved (having been
previously saved in memory), and a new round of training is performed forW ′. The intent is for this
projected MPSW ′ to provide a better initialization for the optimization than could have otherwise been
obtained by directly transforming from finer scales. Table 1 enumerates each step in our algorithm from
initial coarse-graining to training and fine scale projection.

4. Results

4.1. DCASE
The DCASE audio classification set consists of 15 batches (one batch per label), each containing 234 ten
second audio clips for training [40]). Each audio clip is a vector of 441 000 samples, which we embedded into
a vector of 219 elements by padding with zeros. We constrained the problem to focus on binary classification,

8

Mach. Learn.: Sci. Technol. 2 (2021) 035036 J A Reyes and E M Stoudenmire

Figure 6. (a) The training sets are embedded into an MPS (light blue) and coarse grained through the wavelet MERA for training
the weight MPS (white) at the top most layer. (b) Once training is complete, the weight MPS is fine grained through the wavelet
MERA by applying isometries and unitaries, and (c) training is carried out on the training set at the finer scale.

Table 1. Algorithm.

Step 1 Map each training sample xi into |Φ(xi)⟩, equation (11)
Step 2 Coarse grain each |Φ(xi)⟩ through the wavelet MERA
Step 3 TrainW at the current layer
Step 4 Project the trainedW to the finer scale, figure 6
Step 5 Repeat steps 3 and 4 as desired

specifically distinguishing between ‘bus’ and ‘beach’ environment audio clips. The data that support the
findings of this study are available upon reasonable request from the authors.

Each data set for the selected labels was coarse grained throughNh2 Haar transformation before encoding
the data into our Daub4 wavelet MERA. Considering the full set of coarse-graining transformations
Ntot = Nh2 +Nd4, the full parameter space is reduced as 219/2Ntot .

We trained the classifier at the top layer of the MERA for a varying number of Nd4+1 Daub4
transformations, and subsequently projected the weights to the previous finer scale (scale Nd4). The
percentage of correctly labeled examples after training at each scale is shown in figure 7. Each two point
segment corresponds to training at the coarse scale (the right-most point in a segment), followed by training
at the finer scale (the left-most point in a segment). We note that the accuracy of the model decreases with
the number of wavelet transformations. But it is also apparent that training the weights after Nd4+1 layers
produces a better initialization and optimization for training at the Nd4 scale. This is particularly noted for
the Nh2 = 12 as shown in figure 7. The accuracy over the testing set in this case is measured well above the
DCASE baseline score of 61%, when looking at the scores for the back-projected Nd4 = 1 and 2 layers.
Additionally, as can be noted by the closeness in accuracy between the training and testing sets for Nh2 = 14,
versus for Nh2 = 12, the generalization of the model improves with the number of wavelet layers applied.
Optimization was carried over five sweeps, with the bond dimension of the weight MPS adaptively selected
by keeping singular values above the threshold∆= 1× 10−14.

In addition to the above experiments distinguishing clips labeled ‘beach’ from clips labeled ‘bus’, we also
trained our model for the one-versus-all classification task where we distinguish clips labeled ‘beach’ from all
other clips in the dataset. Here the purpose is to directly compare our architecture and training process to the
leading neural-network models using in the 2017 DCASE acoustic scene classification challenge [41–43]. The
results are shown in table 2. While our model’s test accuracy is not the highest, it is competitive with the

9

Mach. Learn.: Sci. Technol. 2 (2021) 035036 J A Reyes and E M Stoudenmire

Figure 7. The percentage of correctly labeled samples (training set as solid lines and test set as dashed lines) for the audio
experiment after trainingW over input data coarse grained through Nd4+1 Daub4 wavelet transformations and then trained
again at Nd4 layers. Each data set was initially embedded into a vector of 219 elements and coarse grained Nh2 Haar wavelet
transformations before being embedded in the Daub4 wavelet MERA. The optimization was carried over five sweeps, keeping
singular values above∆= 1× 10−14.

Table 2. The testing accuracy for various machine learning models applied to the binary classification of the ‘beach’ audio class for the
2017 DCASE acoustic dataset. In this first column are the results for the wavelet-MERA. In the second, the results for a model utilizing a
generative adversarial network (GAN) as input for a convolutional neural network (CNN) are given. This was the winning model of the
DCASE challenge. Additionally in rows three and four results for a deep CNN (DCNN) with subsequent support vector machine (SVM)
and for a convolutional recurrent neural network (CRNN) are given. These neural network models were all ranked amongst the top
twenty in the DCASE acoustic scene classification challenge when applied to the classification of all 15 acoustic scenes.

Model Wavelet-MERA GAN-CNN DCNN-SVM CRNN

Testing accuracy (%) 69.8 83.3 71.3 43.5

other results. We expect these results could be improved in the future with more experience in applying our
architecture to this type of data and additional techniques such as making the parameters in the
wavelet-derived MERA layers trainable.

4.2. Regression
A single data file of the average daily temperatures of the Fisher River recorded from 1 January 1988 to 31
December 1991 were used to construct input data sets for regression in the following manner. By labeling
each temperature xi for 0< i< 1462, the fitting interval Nfit was taken as all the temperatures
{xi|i ∈ [731,1461]}. A single training example was constructed by selecting a contiguous block of p
temperatures from Nfit as input for the MERA. The temperature immediately following this p block was
assigned as the label for that training example. By shifting the starting index of the p block of temperatures,
multiple examples could be constructed. In this way, the regression task was recast as a classification task over
a continuous label. Because nearly every example contained a unique label, we used the average absolute
difference of the interpolated label and the actual label, ⟨ϵ⟩, as a measure of the accuracy of the model. The
training phase of this data was carried out for forty sweeps, and with a singular value threshold set to
∆= 1× 10−9. In figure 8, similar to the audio classification task, ⟨ϵ⟩ is given for input data coarse-grained
through Nd4+1, with the weights trained at this scale, and then projected onto the finer scale Nd4 for further
training. Each two-segment section is representative of training at Nd4+1 layers on the right-most point and
training at Nd4 layers on the left-most point. Again, we note a general decrease in accuracy with the number
of wavelet transformations, but an improvement in accuracy when the weights are initialized by optimization
through Nd4+1 wavelet layers, as compared to directly randomly initializing at Nd4 layers.

5. Discussion

MERA are a family of tensor network factorizations which process information in a hierarchical way and
preserve computational advantages associated with tree-tensor networks, such as efficient marginalization,
yet can be more expressive and powerful because of extra ‘disentangler’ layers which mix branches of the tree.
Here we have proposed an architecture for machine learning which uses MERA layers which approximate
wavelet scaling functions as a preprocessing step, and explored the advantages of this choice. Because of the

10

Mach. Learn.: Sci. Technol. 2 (2021) 035036 J A Reyes and E M Stoudenmire

Figure 8. The average absolute deviation ⟨ϵ⟩ (lower is better), for the temperature experiment after trainingW (MPS) over input
data coarse grained through Nd4+1 wavelet layers and projected back to Nd4 layers. Each data set was initially constructed by
selecting p data points within the set Nfit. The optimization was carried over 40 sweeps, keeping singular values above
∆= 1× 10−9.

presence of disentanglers, MERA are able to approximate non-trivial families of wavelets with overlapping
support, such as Daubechies-4 wavelets.

The fact that a MERA is a tensor network composed of multi-linear transformations allows our model to
have an interesting reversibility property: the trainable parameters of the model can be projected to a finer
scale of resolution while preserving the output of the model, allowing this procedure to initialize more
expressive models by initially training models with fewer parameters. This initialization step showed notable
improvement in the accuracy of the model as compared to the direct initialization of the weights at any given
scale, for a fixed number of optimization sweeps at the finer scale. This is a unique distinguishing feature of
our model. As shown in table 2, by comparing the highest accuracy generated by the fine-graining
initialization methodology of the wavelet-MERA algorithm, in the case of binary classification, it is clear that
our model can yield comparable accuracy to neural network models which were ranked in the top twenty for
acoustic classification models of the 2017 DCASE challenge [41–43]. Further work must be done to improve
this model in the context of multi-class classification. However, it is worth noting that the uniqueness of this
model stands out in that these neural network models are fixed after training, while our model ‘improves
itself ’ by re-scaling a previously trained set of weights for a new initialization of the training.

Among techniques widely used in machine learning, our model architecture most closely resembles a
convolutional neural network (CNN) [44]. In both architectures, data is initially processed through a set of
layers which mix information in a locality-preserving way. Pooling layers commonly used in CNNs closely
resemble the isometry maps in a MERA, which act as a coarse-graining transformation. The connection to
CNNs suggests that future directions worth exploring include making the parameters of the MERA layers
adjustable (i.e. training them along with the weights in the top layer) or finding a more optimal method for
the definition and implementation of disentanglers. More ambitiously, instead of just training the
parameters in a given MERA layer, one can envision computing this layer from a set of weights at a given
scale through a controlled factorization procedure.

By noting the dependence of the accuracy of our model on the number of wavelet layers, we deduce that
the input data can exhibit correlations at length scales that can be lost through the wavelet transformations.
It is therefore important to tailor the number of wavelets and initial size to the specific data set being
analyzed in order to maintain a desirable accuracy. Our setup gives an affordable and adaptive way to strike a
balance between the efficiency and generalization gains obtained by coarse-graining versus model
expressivity by trading off one for the other through the fine-graining procedure. One way to select the best
number of layers to use would be to use too many intentionally, then fine-grain until the gains in model
performance begin to saturate, or until generalization starts to degrade.

We conclude that our algorithm provides an interesting platform for classification and regression, with
unique capabilities. Further work is needed to improve the model accuracy for the classification of
continuous labels (i.e. regression). It is also worth investigating the effect that different wavelet
transformations may have on the model; determining how much is gained by introducing optimizable
parameters into the coarse-graining layers; and investigating adaptive learning schemes for the sizes of
indices in the MERA layers. We emphasize that our MERA realizes daubechie wavelet transformations
corresponding to linear features, and further work must be done to extend this approach to the space of
non-linear features.

11

Mach. Learn.: Sci. Technol. 2 (2021) 035036 J A Reyes and E M Stoudenmire

Data availability statement

The data that support the findings of this study are available upon reasonable request from the authors.

Acknowledgments

J R was partially supported by NSF Grant Nos. CCF-1525943 and CCF-1844434. E M S is supported by the
Flatiron Institute, a division of the Simons Foundation.

ORCID iD

J A Reyes https://orcid.org/0000-0002-6330-9801

References

[1] Marcello D C, Caccin M, Baireuther P, Hyart T and Fruchart M 2019 Machine learning assisted measurement of local topological
invariants (arXiv:1906.03346)

[2] Chinni C, Kulkarni A, Pai D M, Mitra K and Sarvepalli P K 2019 Neural decoder for topological codes using pseudo-inverse of
parity check matrix (arXiv:1901.07535)

[3] Rodriguez-Nieva J F and Scheurer M S 2019 Identifying topological order through unsupervised machine learning Nat. Phys.
15 790–5

[4] Nautrup H P, Delfosse N, Dunjko V, Briegel H J and Friis N 2018 Optimizing quantum error correction codes with reinforcement
learning (arXiv:1812.08451)

[5] Melkinov A, Fedichkin L and Alodjants A 2019 Detecting quantum speedup by quantum walk with convolutional neural networks
(arXiv:1901.10632)

[6] Samaniego E, Anitescu C, Goswami S, Nguyen-Thanh V M, Guo H, Zhuang X and Rabczuk T 2020 An energy approach to the
solution of partial differential equations in computational mechanics via machine learning: concepts, implementation and
applications Comput. Methods Appl. Mech. Eng. 362 112790

[7] Novikov A, Podoprikhin D, Osokin A and Vetrov D 2015 Tensorizing neural networks (arXiv:1509.06569)
[8] Novikov A, Trofimov M and Oseledets I 2016 Exponential machines (arXiv:1605.03795)
[9] Stoudenmire E M and Schwab D J 2017 Supervised learning with quantum inspired tensor networks Adv. Neural Inf. Process. Syst.

29 4799
[10] Stoudenmire E M 2018 Learning relevant features of data with multi-scale tensor networks Quant. Sci. Tech. 3 034003
[11] Glasser I, Pancotti N and Cirac J I 2018 Supervised learning with generalized tensor networks (arXiv:1806.05964)
[12] Yu R, Zheng S, Anandkumar A and Yue Y 2017 Long term forecasting using tensor-train RNNs (arXiv:1711.00073)
[13] Han Z-Y, Wang J, Fan H, Wang L and Zhang P 2018 Unsupervised generative modeling using matrix product states Phys. Rev. X

8 031012
[14] Liu D, Ran S-J, Wittek P, Peng C, Garcia R B, Su G and Lewenstein M 2019 Machine learning by unitary tensor network of

hierarchical tree structure New J. Phys. 21 073059
[15] Cheng S, Wang L, Xiang T and Zhang P 2019 Tree tensor networks for generative modeling Phys. Rev. B 99 155131
[16] Levine Y, Yakira D, Cohen N and Shashua A 2017 Deep learning and quantum entanglement: fundamental connections with

implications to network design (arXiv:1704.01552)
[17] Glasser I, Sweke R, Pancotti N, Eisert J and Ignacio Cirac J 2019 Expressive power of tensor-network factorizations for probabilistic

modeling, with applications from hidden Markov models to quantum machine learning (arXiv:1907.03741)
[18] Batselier K, Cichocki A and Wong N 2019 MERACLE: constructive layer-wise conversion of a tensor train into a MERA

(arXiv:1912.09775)
[19] Kossaifi J, Lipton Z C, Koleinsson A, Khanna A, Furlanello T and Anandkumar A 2020 Tensor regression networks JMLR 21 1–21
[20] Bradley T-D, Stoudenmire E M and Terilla J 2019 Modeling sequences with quantum states: a look under the hood

(arXiv:1910.07425)
[21] Orus R 2014 A practical introduction to tensor network states: matrix product states and projected entangled pair states Ann. Phys.,

NY 349 117–58
[22] Cichocki A 2014 Tensor networks for big data analytics and large-scale optimization problems. (arXiv:1407.3124)
[23] Vidal G 2003 Efficient classical simulation of slightly entangled quantum computations Phys. Rev. Lett. 91 147902
[24] Perez-Garcia D, Verstraete F, Wolf M M and Cirac J I 2007 Matrix product state representations Quantum Info. Comput. 7 401–30
[25] Schollwöck U 2011 The density matrix renormalization group in the age of matrix product states Ann. Phys., NY 326 96–192
[26] Oseledets I 2011 Tensor-train decomposition SIAM J. Sci. Comput. 33 2295–317
[27] Vidal G 2008 A class of quantum many body systems that can be efficiently simulated Phys. Rev. Lett. 101 110501
[28] Evenbly G and Vidal G 2009 Algorithms for entanglement renormalization Phys. Rev. B 79 144108
[29] Vidal G 2007 Algorithms for entanglement renormalization (arXiv version 2) (arXiv:0707.1454v2)
[30] Dolfi M, Bauer B, Troyer M and Ristivojevic Z 2012 Multigrid algorithms for tensor network states Phys. Rev. Lett. 109 020604
[31] Walker J 1999 A Primer of Wavelets and Their Scientific Applications (Boca Raton, FL: CRC Press)
[32] Evenbly G and Vidal G 2011 Quantum criticality with the multi-scale entanglement renormalization ansatz (arXiv:1109.5334)
[33] White S 1992 Density matrix formulation for quantum renormalization groups Phys. Rev. Lett. 69 2863–6
[34] Wilson K G 1979 Problems in physics with many scales of length Sci. Am. 241 158–79
[35] Vidal G 2007 Entanglement renormalization Phys. Rev. Lett. 99 220405
[36] Evenbly G and White S R 2016 Entanglement renormalization and wavelets Phys. Rev. Lett. 116 140403
[37] Evenbly G and White S R 2018 Representation and design of wavelets using unitary circuits Phys. Rev. A 97 052314
[38] Paeckel S, Köhler T, Andreas Swoboda S R Manmana U S and Hubig C 2019 Time-evolution methods for matrix-product states

Ann. Phys., NY 411 167998
[39] Vidal G 2004 Efficient simulation of one-dimensional quantum many-body systems Phys. Rev. Lett. 93 040502

12

https://orcid.org/0000-0002-6330-9801
https://orcid.org/0000-0002-6330-9801
https://arXiv.org/abs/1906.03346
https://arXiv.org/abs/1901.07535
https://doi.org/10.1038/s41567-019-0512-x
https://doi.org/10.1038/s41567-019-0512-x
https://arXiv.org/abs/1812.08451
https://arXiv.org/abs/1901.10632
https://doi.org/10.1016/j.cma.2019.112790
https://doi.org/10.1016/j.cma.2019.112790
https://arXiv.org/abs/1509.06569
https://arXiv.org/abs/1605.03795
https://doi.org/10.1088/2058-9565/aaba1a
https://doi.org/10.1088/2058-9565/aaba1a
https://arXiv.org/abs/1806.05964
https://arXiv.org/abs/1711.00073
https://doi.org/10.1103/PhysRevX.8.031012
https://doi.org/10.1103/PhysRevX.8.031012
https://doi.org/10.1088/1367-2630/ab31ef
https://doi.org/10.1088/1367-2630/ab31ef
https://doi.org/10.1103/PhysRevB.99.155131
https://doi.org/10.1103/PhysRevB.99.155131
https://arXiv.org/abs/1704.01552
https://arXiv.org/abs/1907.03741
https://arXiv.org/abs/1912.09775
https://arXiv.org/abs/1910.07425
https://doi.org/10.1016/j.aop.2014.06.013
https://doi.org/10.1016/j.aop.2014.06.013
https://arXiv.org/abs/1407.3124
https://doi.org/10.1103/PhysRevLett.91.147902
https://doi.org/10.1103/PhysRevLett.91.147902
https://doi.org/10.1016/j.aop.2010.09.012
https://doi.org/10.1016/j.aop.2010.09.012
https://doi.org/10.1137/090752286
https://doi.org/10.1137/090752286
https://doi.org/10.1103/PhysRevLett.101.110501
https://doi.org/10.1103/PhysRevLett.101.110501
https://arXiv.org/abs/0707.1454v2
https://doi.org/10.1103/PhysRevLett.109.020604
https://doi.org/10.1103/PhysRevLett.109.020604
https://arXiv.org/abs/1109.5334
https://doi.org/10.1103/PhysRevLett.69.2863
https://doi.org/10.1103/PhysRevLett.69.2863
https://doi.org/10.1038/scientificamerican0879-158
https://doi.org/10.1038/scientificamerican0879-158
https://doi.org/10.1103/PhysRevLett.99.220405
https://doi.org/10.1103/PhysRevLett.99.220405
https://doi.org/10.1103/PhysRevLett.116.140403
https://doi.org/10.1103/PhysRevLett.116.140403
https://doi.org/10.1103/PhysRevA.97.052314
https://doi.org/10.1103/PhysRevA.97.052314
https://doi.org/10.1016/j.aop.2019.167998
https://doi.org/10.1016/j.aop.2019.167998
https://doi.org/10.1103/PhysRevLett.93.040502
https://doi.org/10.1103/PhysRevLett.93.040502

Mach. Learn.: Sci. Technol. 2 (2021) 035036 J A Reyes and E M Stoudenmire

[40] IEEE AASP Challenge on Detection and Classification of Acoustic Scenes and Events 2017 (available at: http://www.cs.tut.fi/sgn/
arg/dcase2017/challenge/)

[41] Mun S, Park S, Han D K and Ko H 2017 Generative adversarial network based acoustic scene training set augmentation and
selection using SVM-hyperplane (available at: http://dcase.community/documents/challenge2017/technical-reports/DCASE2017-
Mun-213.pdf)

[42] Weiping Z, Jiantao Y, Xiaotao X and Shaohu P 2017 Acoustic scene classification using deep convolutional neural network and
multiple spectrograms fusion (available at: www.cs.tut.fi/sgn/arg/dcase2017/documents/challenge-technical-reports/DCASE2017-
Xing-158.pdf)

[43] Kukanov I, Hautamaki V and Lee K A 2017 Recurrent neural network and maximal figure of merit for acoustic event detection
(available at: www.cs.tut.fi/sgn/arg/dcase2017/documents/challenge-technical-reports/DCASE2017-Kukanov-196.pdf)

[44] Schmidhuber J 2015 Deep learning in neural networks: an overview Neural Netw. 61 85–117

13

http://www.cs.tut.fi/sgn/arg/dcase2017/challenge/
http://www.cs.tut.fi/sgn/arg/dcase2017/challenge/
http://dcase.community/documents/challenge2017/technical-reports/DCASE2017-Mun-213.pdf
http://dcase.community/documents/challenge2017/technical-reports/DCASE2017-Mun-213.pdf
http://www.cs.tut.fi/sgn/arg/dcase2017/documents/challenge-technical-reports/DCASE2017-Xing-158.pdf
http://www.cs.tut.fi/sgn/arg/dcase2017/documents/challenge-technical-reports/DCASE2017-Xing-158.pdf
http://www.cs.tut.fi/sgn/arg/dcase2017/documents/challenge-technical-reports/DCASE2017-Kukanov-196.pdf
https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.1016/j.neunet.2014.09.003

	Multi-scale tensor network architecture for machine learning
	1. Introduction
	2. Theoretical background
	2.1. Learning task and model functions
	2.2. Wavelet transformations
	2.3. MPS tensor network and optimization
	2.4. MERA

	3. Model and training algorithm
	3.1. Coarse graining
	3.2. Training
	3.3. Fine scale projection

	4. Results
	4.1. DCASE
	4.2. Regression

	5. Discussion
	Acknowledgments
	References

