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Abstract

The goal of this paper is to investigate the Generalized Hyers - Ulam - Rassias (HUR) stability of general
quartic functional equation (GQFE)

fakro 4 (k = 1)r2) + fo(kr — (k = D)r2) = 2k" fo(r1) + 2(k — 1) fy(r2)

+6k%(k — 1)%[fg(r1 + 12) + fq(r1 — r2)] — 12k%(k — 1)*[f4(r1) + fq(r2)]

in fuzzy normed spaces (F.N. spaces). The stability of the equation is proved by using direct method. The
stability in sense of Hyers - Ulam and Ulam- Gavruta - Rassias is also studied.
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1 Introduction

The theory of functional equations (FEs) is a vast area of nonlinear analysis, which is rather hard to explore.
Geometry, economics, game theory, measure theory, dynamics, and a variety of other subjects all use FEs. In
the subject of analysis, the study of solutions and stability results of FEs is a popular topic. The stability results
are utilised to investigate additive mappings’ asymptotic properties.

Next, let us recollect the chronicle in the stability theory for FEs. The concept of stability for various FEs arises
when one replaces a FE by an inequality, which acts as a perturbation of the equation. The stability problem
for the FEs about the stability of group homomorphisms was started by Ulam [1]. The Ulam’s question was
to an extent solved by Hyers [2] in the case of approximately additive mappings. Thereafter, Hyers’ result was
generalized by Aoki [3] and improved for additive mappings, and subsequently improved by Rassias [4] for linear
mappings by allowing the Cauchy difference to be unbounded. Subsequently, G G vruta [5| generalized Rassias
theorem and discussed the stability of linear FEs.

The QFE was first introduced by Rassias [6], who solved its Ulam stability problem. Later, Lee et al. [7]
remodified Rassias’ QFE and obtained its general solution. Numerous mathematicians have extensively studied
the stability problems of various QFE in a variety of spaces, including intuitionistic fuzzy normed spaces, random
normed spaces, non-Archimedean fuzzy normed spaces, Banach spaces and many other (see [8, 9, 10, 11]). Most
of the proofs of stability problems in the sense of Hyers—Ulam have used Hyers’ direct method. The exact
solution of the FE is explicitly obtained as the limit of a sequence, which starts from the given approximate
solution.

2 Preliminaries

Katsaras [12] explicated the postulation of the fuzzy norm over linear space. Since then, various mathematicians
[13, 14, 15] gave the meaning of fuzzy norm over vector space from different perspectives.

Definition 2.1. [13] A function M : 7, x R — [0,1] (F, being a real vector space over field F) is labeled as
a fuzzy norm over Fy, if, Vx,y € F, and all ¢,s e R,k € F':

M(z,c) =0for ¢ <0,

x=0 iff M(z,c¢)=1 forall ¢>0,

M(kz, c) = M(z, 7) ifk #0,

Mz +y,s +c) > min{M(z,s), M(y,c)},

M(z,.) is non-decreasing function in R and lim M(z,c¢) =1,
M(

Cc—» 00

A

z,.) is continuous on R, = #0.

The pair (Fy, M) is called as a fuzzy normed vector space (F.N. space)[13].
Definition 2.2. [13]

1. Let (Fp, M) be a F.N. space. A sequence {a,} in F is said to be convergent if 3 an a € F such
that lim M(an —a,7) = 1 for all » > 0, where a is the limit of the sequence {a,}, denoted by
n—oo

M- lim a, =a.
n— o0

2. Let (Fy, M) be a F.N. space. A sequence {a,} in F; is labeled as Cauchy if for each e > 0 and each
r > 0 there exists an no € N such that for all n > ng and all m > 0, we have M(an4m —an,r) > 1—¢€.

3. The fuzzy norm is said to be complete if every Cauchy sequence is convergent and then the fuzzy normed
vector space is called a fuzzy Banach space.
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F. Skof [16] has studied HU stability of F.E.

fa(@1 4+ x2) + folz1 — 22) = 2fq(x1) + 2f4(22)

for mapping fg; from real normed space to Banach space. Under the same set-up, K. W. Jun et. al. [17]
analyzed the stability problem of following cubic FE

fe(2z1 + 22) + fe(2z1 — 22) = 2[fe(m1 + x2) + fe(z1 — 22) + 6fc(21)].

In this paper, we prove the Generalised HUR stability of the GQFE

falkry + (k= V)r2) + fo(kri — (k — 1)r2) = 2K fo(r1) + 2(k — 1)* f4(r2)
+6k2(k - 1)2[fq(7"1 +r2) + fo(r1 —r2)] — 12k2(k - 1)2[fq(7“1) + fq(r2)] (2.1)

in F.N. spaces using direct method.

3  Generalized HUR Stability of the GQFE in Fuzzy Normed
Spaces

Throughout this section, let Vs be a real linear space, and (Fn,./\/l,) and (Fp, M) be a F.N. space and fuzzy
Banach space respectively. Also, define
Dfq(r1,r2) = fo(kry + (k — 1)r2) + fo(kr1 — (k — 1)r2) — 2k4fq(rl) —2(k - 1)4f<1(7"2)

—6k%(k — 1)*[fq(r1 +72) + fa(r1 — r2)] + 1267 (k — 1)*[fg(r1) + fo(r2)]

for all r1,72 € V5.

3.1 Theorem
Let € {1,—1} be fixed and n:V? — F, be a function such that

M (n(kr1,0),¢) = M (pn(r1,0), c) (3.1)

for all 1 € Vs and all ¢ > 0, where p > 0 with (k%) <1,and

lim M,(n(kbrl, kPry), k*e) = 1

b—oo

for all r1,72 € Vs and all ¢ > 0. Let f;:Vs — Fp be a mapping which maps zero to zero and satisfies

M(Dfy(r1,r2),¢) > M (n(r1,72),¢) (3.2)

for all 71,72 € Vs and all ¢ > 0. Then the limit

Qn(r1) = M — lim ifq(k“brl)

b—oo k4b

exist for all r1 € Vs with a unique quartic mapping @, : Vs — F; such that

MUfofrs) = Qu(r). ) = M (n(r1,0), =2 (33)

for all 1 € Vs and all ¢ > 0.
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Proof. Let j= 1. Replace (r1,72) by (r1,0) in (3.2) to get

M(2f(kr1) = 2k fy(r1),¢) > M (n(r1,0), ¢),

for all 1 € Vs and all ¢ > 0. Or we can say,

M(falkrs) = B £4(m), 5) = M (n(r1,0), 0). (3.4)
After replacing 1 by kbr1 in (3.4) we get,
b1 ,
MDD gk, 55 ) = Mk 0,0), (35)

for all 7 € Vs and all ¢ > 0. Using (3.1), we obtain

M(% fa(kbr1), 2k4) > MI(U(ThO)v i)v (3.6)

for all 71 € Vs and all ¢ > 0. Replacing ¢ by pbc in (3.6), we get

fa(k*Fr1)  fo(KPr1)  pe ’
M( qk4(b+1) - qk4b 72k4(b+1)) >M (77(7"1:0)70): (37)

for all 1 € Vs and all ¢ > 0. Next, we have

fq(k 1) _ - fq(kj+1rl) fq(k’jrl)
g~ Jalr) = ZE( kG kA )
i=
Hence, from above equation and (3.7) we get,
b—1 ;
fa(k'r1) pc
M( qk4b - fQ(T1)7 - 2k4(j+1))
=
fa( k]+1 1) fq(kjrl) pe i
> min{ M - S ) =01 b -1
> /\/l/(n(rl,O),c), (38)

for all 71 € Vs and all ¢ > 0. Replacing r1 by k%1 in (3.8), we get

M(fq(k””m)_fq(karl)f’i ve )

M (n(k®r1,0), )

k4(b+a) k4a — 2k4(i+a+1) =
=
> M'(n(h,()),]%). (3.9)
Or simply,
b+a—1 ;
fq(kb+a7"1) fq (k1) pc ¢
M( ETCEy B v ]Za W) > M (n(r1,0),¢), (3.10)
for all 1 € Vs, ¢ >0 and all a,b > 0. Again replacing ¢ by B B (3.10), we get,
Yita  pAGFD
fq(kb+arl) fa(k®r1) ¢
M( fA(b+a) - kda ) >M ( (T17 )7 B (311)

Sobte-t__pl
j=a 240 +1)
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for all 1 € Vs, ¢ > 0 and all a,b > 0. Since 0 < p < k* and Z;‘;O (k%)] < 00, the cauchy criterion for

b
convergence and definition of fuzzy normed space implies that {%} is a Cauchy sequence in (Fp, M) is a

fuzzy Banach space, hence the sequence converges to a point Qn(r1) € Fp. Define Qn(r1) = Vs — Fp by
fq(kbrl)

Qn(r1) =M — lim

b— oo k4b

all 71 € V,. Letting a =0 in (3.11), we get

c
b—1 _ pi )
=0 2KAGF1)

(R4 ) 2

finld (3.12)

for all 1 € Vs and all ¢ > 0. Taking the limit b — co and again using definition of fuzzy normed space, we get,
/ c
M(fa(r1) = Qulri),e) = M (n(r1,0), S (K* = p)).

for all 71 € Vs and all ¢ > 0. Next we claim that @, is quartic. Replacing 71,72 by kbrl,kbrg in (3.2), we

have,
1 » ’
M(Wqu(kbrhkaQ)?C) > M (n(kbrl7kb7"2)7k4bc)

for all 1,72 € Vs and all ¢ > 0. Since,

lim M,(n(kbrhkbrz), k'e) =1

b—oo

Qn satisfies (2.1). Hence, Qn(r1) = Vs — F is quartic.
For uniqueness, let Q,n(rl) = Vs — Fp be another quartic mapping satisfying (3.3). For 71 € Vs, we have
Qn(k'r1) = k*Qn(r1) and Q.,(k'r1) = k*Q.,(r1) for all b€ N. It follows from (3.3) that

inilzzﬁ) B ini/ZZTl) ’ c)

M(Qu(r1) = Qu(r1),c) :M(

> mm{M(Qn(kzbh) B Qu (kbr1) 0)7M(Qn(kb7’1) _ Qu (k') E)}

Je4b f4b 79 f4b fe4b )

, k4b k4 _

> M (gt 0), =2
: Kl ~p)

> M (77(7“170)7 T)

; iy KPe(kt=p) _ :
for all 1 € Vs and all ¢ > 0. Since, bhm Tapp . = 00, we obtain
— 00

k4bc(k4 _p)) _

bli>rgo M (77(7“1, 0); 4pb

So, we conclude that Qn(r1) = Q;(m) for all r1 € V5. Thus Qn : Vs — Fp is unique quartic mapping as
desired.
We can demonstrate the result in the same manner for j = —1. This completes the proof. O

3.2 Corollary

Let fq:Vs — F, be a mapping which maps zero to zero and satisfies

A M (4, ¢),
M(Dfg(r1,m2),0) = 4 M(A(Ira]|” + [[ra] 1), 0), B#4 (3.13)
MA(r P2l + (|22 2] %), 0), - B # 2
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for all 1,72 € Vs and all ¢ > 0, where A and (3 are real constants with A > 0. Then there exist a unique
quartic mapping @, : Vs — Fp such that

M (4, A
’ 4
MUfalrs) = @ulra).e) = § M (Allm])?, 225, B#4 (3.14)
’ ok 2P
M (Aljr PP, 55, B#2
for all 1 € Vs and all ¢ > 0.
Proof. Taking
A,
n(ri,r2) = A(llr ] + 1|r211),

B#4
Al Pl + 1] 2 + 1Irs][29), 8 # 2

for all 71,72 € V in Theorem [2.1], we get the desired result [18]. O

4

Conclusion

In this paper a new type GQFE is introduced and its Generalized HUR stability is proved in fuzzy normed space.
In future, stability of the equation can also be proved in various spaces like random normed space, modular
space, non-Archimedean normed space, quasi- 3 -normed spaces etc.
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