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Abstract 
 
Aims: To study the implications of power transformations namely; inverse-square-root, inverse, 
inverse-square and square transformations on the error component of the multiplicative error and 
determine whether the unit-mean and constant variance assumptions of the model are either 
retained or violated after the transformation. 
Methodology: We studied the distributions of the error component under the various 
distributional forms of the generalized gamma distribution namely; Gamma (a, b, 1), Chi-square, 
Exponential, Weibull, Rayleigh and Maxwell distributions. We first established the functions 
describing the distributional characteristics of interest for the generalized power transformed 
error component and secondly applied the unit-mean conditions of the untransformed 
distributions to the established functions. 
Results: We established the following important results in modeling using a multiplicative error 
model, where data transformation is absolutely necessary;(i) For the inverse-square-root 
transformation, the unit-mean and constant variance assumptions are approximately maintained 
for all the distributions under study except the Chi-square distribution where it was violated.  (ii) 
For the inverse transformation, the unit-mean assumptions are violated after the transformation 
except for the Rayleigh and Maxwell distributions.  (iii)  For the inverse-square transformation, 
the unit-mean assumption is violated for all the distributions under study. (iv) For the square 
transformation, it is only the Maxwell distribution that maintained the unit-mean assumption. (v) 
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For all the studied transformations the variances of the transformed distributions were found to 
be constant but greater than those of the untransformed distribution. 
Conclusion: The results of this study though restricted to the distributional forms of the 
generalized gamma distribution, however they provide a useful framework in modeling for 
determining where a particular power transformation is successful for a model whose error 
component has a particular distribution. 
Keywords: Error component; mean; multiplicative error model; power transformation;   variance. 
 

1 Introduction 
 
A multiplicative error model (MEM) is defined by [1] as 
 

 , µ ξ∈ =t t N t tX                   (1) 

 

where ,t t NX ∈ is a real-valued, discrete time stochastic process defined on [0, + ∞), tµ , defined 

conditionally on ( )1 1,µ θ− −Ψ = Ψt t  is a positive quantity that evolves deterministically 

according to the parameter vector, θ . t 1−Ψ is the information available for forecasting ,t t NX ∈

and ξ t is a random variable with a probability density function defined over a [0, +∞) support 

with unit mean and unknown constant variance, 2
1σ . That is  

 

( )2
1 1~ 1,t Vξ σ+

                     (2) 

 

There is no question that the distribution of  tξ in (1) can be specified by means of any 

probability density function (pdf) having the characteristics in (2). Examples are Gamma, Log-

Normal, Weibull, and mixtures of them [1]). [2] favor a Gamma ( ),φ φ (which implies

2 1σ φ= ); [3], in Autoregressive Conditional Duration (ACD) model framework considered a 

Weilbull ( )( )11 ,φ φ−Γ +  (in this case, ( ) ( )( )2 21 2 1 1σ φ φ=Γ + Γ + − ). As a result of 

the above suggested specifications, the error component ξ ξ=t  would be generally studied 

under the generalized gamma distribution (GGD) which according to [4] can be represented by 
 

( ) ( ) ( )

( )

1

, 0

cbc aa c a e
f

b

ξξ
ξ ξ

− −

= >
Γ

                           (3) 

 
where a (a shape parameter) and b are real numbers. c can in principle take any real value but 
normally we consider the case where c ≥ 0. The reason of using the GGD as the study distribution 
is because the various distributional forms (The 3-parameter gamma, Chi-square, Exponential, 
Weilbull, Rayleigh and Maxwell distributions) of the GGD  for various values of a, b and c, have 
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the distributional characteristics given in (2). The distributional forms of (3) for various values of 
a, b and c are given in Table 1. For more details on the generalized gamma distribution, see [5]. 
 

Table 1: Relation of the GGD to other Distributions 

 

S/N Generalized Gamma Distribution (GG(a, b, c)) a b c 
1 Gamma ( )( ), ,1Gamma a b  a b 1 

2 Chi- square  1

2
 

2

n
 

1 

3 Exponential  1

α
 

1 1 

4 Weibull  1

σ
 

1 α  

5 Rayleigh  1

2σ
 

1 2 

6 Maxwell  1

2σ
 

3

2
 

2 

 
It is not an overstatement to say that statistics is based on various data transformations. Basic 
statistical summaries such as sample mean, variance, z-scores, histograms, etc., are all 
transformed data. Some more advanced summaries such as principal components, periodograms, 
empirical characteristics functions, etc., are also examples of transformed data.  According to [6], 
“transformations in statistics are utilized for several reasons, but unifying arguments are that 
transformed data”; (i) are easier to report, store and analyze (ii) comply better with a particular 
modeling framework and (iii) allow for additional insight to the phenomenon not available in the 
domain of non-transformed data. For example, variance stabilizing transformations, symmetrizing 
transformations, transformations to additivity, laplace, Fourier, Wavelet, Gabor, Wigner-Ville, 
Hugh, Mellin, transforms all satisfy one or more of points listed in (i – iii). 
 
Many important results in statistical analysis follow from the assumption that the population being 
sampled or investigated is normally distributed with a common variance and additive error 
structure. For the multiplicative error model where normality assumption is out of the question, 
the assumptions of interest are that the error component has unit mean and constant variance. 
When the relevant theoretical assumptions relating to a selected method of analysis are 
approximately satisfied, the usual procedures can be applied in order to make inferences about 
unknown parameters of interest. In situations where the assumptions are seriously violated several 
options are available [7]: (i) Ignore the violation of the assumptions and proceed with the analysis 
as if all assumptions are satisfied. (ii) Decide “what is the correct assumption in place of the one 
that is violated” and use a valid procedure that takes into account the new assumption. (iii) Design 
a new model that has important aspects of the original model and satisfies all the assumptions, e.g. 
by applying a proper transformation to the data or filtering out some suspect data point which may 
be considered outlying. (iv) Use a distribution-free procedure that is valid even if various 
assumptions are violated. For more details on the above listed options, see [8]. 
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Most researchers, however, have opted for (iii) which has attracted much attention as documented 
by [9] and [10] among others. In this study our interest would center on transformation as a 
remedy for situations where the assumptions for parametric data analysis are seriously violated. 
 
Data transformations are the applications of mathematical modifications to the values of a variable 
.However caution should be exercised in the choice of the type of transformation to be adopted so 
that the fundamental structure of the series is not distorted and thereby rendering the interpretation 
very difficult or impossible. There are two major methods of data transformations namely Bartlett 
and Box and Cox methods of data transformation, however for ease of application we would only 
consider the Bartlett’s techniques. 
 
[11] used the simple relation between mean and standard deviation over several groups for choice 
of appropriate transformation. [12] had shown how to apply Bartlett’s transformation technique to 
time series data using the Buys-Ballot table. For details on Buys-Ballot table, see [13]. According 
to [12], the relationship between variance and mean over several groups is what is needed for 
choice of appropriate transformation. If we take random samples from a population, the means 
and standard deviations of these samples will be independent (and thus uncorrelated) if the 
population has a normal distribution [14]. [12] showed that Bartlett’s transformation for time 
series data is to regress the natural logarithms of the group standard deviations 

( ).ˆ , 1,2,...,i i mσ =  against the natural logarithms of group means ( ). , 1,2,...,iX i m= and 

determine the slope, p of the relationship 

 

 . .ˆlog loge i e ip X errorσ α= + +                 (4) 

 
For non-seasonal data that require transformation, we split the observed time series 

, 1,2,...,tX t n=  chronologically into m fairly equal different parts and compute 

( ). , 1,2,...,iX i m=  and ( ).ˆ , 1,2,...,i i mσ =  for the parts. For seasonal data with the length of 

the periodic intervals, s, the Buys-Ballot table naturally partitions the observed data into m periods 
or rows for easy application. [12]) also showed that Bartlett’s transformation may also be regarded 
as the power transformation 
 

 ( ){ 1

log , 1

, 1

e t

p
t

X p

X p−

=

≠                   (5) 

 
Summary of transformations for various values of p  is given in Table 2. 



 
 
 
 
 
 
 

British Journal of Mathematics & Computer Science 4(2), 288-306, 2014 
 
 

292 
 

Table 2: Bartlett’s Transformation for some values of p. 

S/N p Required Transformation 
1 0 No transformation 
2 1

2
 tX  

3 1 loge tX  

4 3

2
 

1

tX
 

5 2  1

tX
 

6 3 
2

1

tX
 

7 1−  2
tX  

 
Recently there are various studies on the effects of transformation on the error component of the 
multiplicative error models whose distributional characteristics is given in (2). The overall aim of 
such studies is to establish the conditions for successful transformation [15]. According to [15], a 
successful transformation is achieved when the desirable properties of a data set remain 
unchanged after transformation. For the MEM where the normality assumption of the error 
component is out of the question, therefore in this study we shall be interested in the unit mean 
and constant variance assumptions. For the purely multiplicative time series model whose error 
component in addition to being normally distributed is classified under the characteristics given in 
(2), [16], [17] and [18] had respectively investigated the effects of logarithm, square and inverse 

transformations on the error component, tξ , where  ( )2
1~ 1,t Nξ σ . [16] discovered that the 

logarithm transform; Y = Log tξ  can be assumed to be normally distributed with mean, zero and 

the same variance, σ2 for σ1 < 0.1. Similarly [17] discovered that the square transform; 2ξ= tY  

is successful in the interval
 10 0.027σ< ≤ , where 1σ  is the standard deviation of the original 

error component before transformation whereas [18] discovered that the inverse transform 
1

t

Y
ξ

=  can be assumed to be normally distributed with mean, one and the same variance 

provided 0.10σ ≤ .  

 
 
The application of power transformation to model (1) gives 
 

 * * *
, µ ξ∈ =t t N t tX                              (6) 
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where ( )*
, , ,

p p
t t N t t N t t NX X X∈ ∈ ∈= = , *µ µ= p

t t , ( )* p p
t t tξ ξ ξ= = and 

 

( )2 3
2 2 2

1
~ 1 , , 1, , 1, , 2, 3

2
ξ σ+ = −p

t V p                             (7) 

 

where p
tξ  is the generalized power transformed error component of model (1). The most popular 

power transformations are 2log , ,1/ ,e t t t tX X X X and 21/ tX  .The results of the 

transformations on model (1) are given in Table 3. The logarithm transformation
 
converts the 

multiplicative error model (1) to the additive model while the other listed transformations leave 
the model still multiplicative. For the logarithm transformation 
 

 * *log log logµ ξ µ ξ= = + = +t e t e t e t t tY X                                (8) 

 
In Table 3 the following notations were adopted 
 

 tY  = Transformed observed series 

 *µ =t  The Transformed function of µ t   

 *
tξ =  Transformed error component 

 
It is clear from Table 3, that only the logarithm transformation alters the assumptions placed on 
the error component of the multiplicative error model and as a result interest in this paper would 
be centered on the transformations that leaves model (1) still multiplicative. 
 

Table 3: Transformations of the multiplicative Error Model 

tY  µt  *
tξ  Model for tY   Assumption on *

te   

loge tX   log µe t   loge tξ   Additive ( )* 2
2 2~ 0,ξ σ+

t V  

tX  µt  tξ  Multiplicative ( )* 2
2 2~ 1,ξ σ+

t V  

1/ tX  1/µt  1/ tξ  Multiplicative ( )* 2
2 2~ 1,ξ σ+

t V  
2
tX  2µt  2

tξ  Multiplicative ( )* 2
2 2~ 1,ξ σ+

t V  

1/ tX  1/ µt  1/ tξ  Multiplicative ( )* 2
2 2~ 1,ξ σ+

t V  
21/ tX  21/µt  21/ tξ  Multiplicative ( )* 2

2 2~ 1,ξ σ+
t V  
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Since model (6) is still a multiplicative error model and therefore *
tξ must also be characterized 

with unit mean and some constant variance, 2
2σ  which may or may not be equal to2

1σ  . Thus, in 

this paper, we want to study the effect of power transformations on a non-normal distributed error 
component of a multiplicative error model whose distributional characteristics belong to the 
Generalized Gamma distribution. The purpose is to determine if the assumed fundamental 
structure of the error component (unit mean and constant variance) is maintained after the power 

transformation and also to investigate what happens to  2
1σ  and 2

2σ
 
in terms of equality or non-

equality. According to [15], the overall reason for concentrating on the error component of model 
(6) is as plane as the nose on the face: the reason is that the assumptions for model analysis are 
always placed on the error component.

   
In this fertile academic minefield, [15] had studied the implication of square root transformation 
on the unit mean and constant variance assumptions of the error component of model (1) whose 
distributional characteristics belong to the Generalized Gamma Distribution for the various forms; 
Chi-square, Exponential, Gamma (a, b, 1), Weibull, Maxwell and Rayleigh distributions. From the 
results of the study, the unit mean assumption is approximately maintained for all the given 
distributional forms of the GGD. However there were reductions in the variances of the 
distributions except those of the Gamma (a, b, 1), for a > 1, Rayleigh and Maxwell that increased, 
hence they concluded that square-root transformation is not appropriate for multiplicative error 
model with a Gamma (a, b, 1) for a > 1 or Rayleigh or Maxwell distributed error component. 
Finally, [15] recommended that square-root transformation, where applicable for a multiplicative 
error model are successful for the studied distributions if the variance of the transformed error 
component < 0.5. 
 
Out of the six popular power transformations namely logarithm, square root, inverse, inverse 
square root, square and inverse square, only the effect of square root transformation on the error 
component of the multiplicative error model with regard to unit mean and constant variance had 
been studied by [15], leaving the others yet to be studied. Whereas the logarithm transformation 
converts the multiplicative error model to an additive model, the others still leave it multiplicative 
therefore in this paper we study the effect of the power transformations namely; inverse square 
root, inverse, inverse square and square on the error component of the multiplicative error model 
with the overall aim of investigating on what happens to the unit mean and constant variance 
assumptions after the transformations. This study would be carried out under the generalized 
gamma distribution considering that all the suggested distributions of the error component of the 
multiplicative error model ([1]; [2];[3]) are the various forms of the generalized gamma 
distribution. 
 
This paper is organized as follows; Section One contains the introduction while the distributional 
characteristics of the generalized power transformed error are contained in Section Two. While 
the results of the study are in Section three, the conclusion, acknowldgements, authors 
contributions and references are respectively contained in Sections four, five, six and seven..  
 

For simplicity, the notation tξ ξ=  and tY Y=  would be adopted. 
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2 DISTRIBUTIONAL CHARACTERISTICS OF THE 
GENERALIZED POWER TRANSFORMED ERROR 
COMPONENT 

 
Suppose the distributional characteristics ofξ  belongs to the generalized gamma distribution 

whose probability density function denoted as ( )f ξ  is (3), let 

 

 py ξ=                    (9) 
 
where p is a power transformation, therefore 
 

  

1

pyξ =   
 
and 

 

1
11 pd

y
d y p

ξ −
=     

 
therefore based on the result in [14], the probability density function of y would be given by 

 ( )
( )

( )

1

1
1 1

11

c

pa y
bc

bc p
pa c y e

f y y
b p

 
 −−  
  −

=
Γ

 

( )

( )

1

, 0

c
p p

bc
a ypbca c y e

y
p b

 
−  − 

= >
Γ

               (10) 

 
(10) is a probability density function (pdf) and in what follows, we have to show that its integral is 

unity    ( That is, ( )
0

1f y d y
∞

=∫ ). We proceed as follows; 

 

( ) ( )
( )1

0 0

c
p p

bcbc
a ypa c

f y d y y e d y
p b

 ∞ ∞ −  − =
Γ∫ ∫               (11) 

 
By adopting the substitution 
 

 ( ) , 0
c

p pw a y w= < <∞                (12) 
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in (10) we have the following results 
 

 

1 1

; ;

p p p

c c c

p p p

w d y p w p w
y d y d w

a d w c a c a

− −

= = =              (13) 

 
Now substituting the results in (12) and (13) into (11) we obtain 
 

 ( ) ( )

1
1

0 0

bc
p pp

bc c c
w

p p

a c w p w
f y d y e d w

p b a c a

 
− 

  −∞ ∞
−

 
 =  Γ  
 

∫ ∫              (14) 

 
After a series of algebraic evaluation in (14) we have that 
 

 ( ) ( ) ( )
( )0

1

bc
bc p pa a b

f y d y
b

−∞ Γ
= =

Γ∫ ,     

 
Having shown that (10) is a proper pdf by showing that its integral is unity, we now proceed to 
obtain its generalized kth moment as follows, where k is a positive integer: By definition 

( ) ( )
0

k kE Y y f y d y
∞

= ∫ , hence 

 ( ) ( ) ( )
( )1

0 0

c
p p

bcbc
a ypk k ka c

E Y y f y d y y y e d y
p b

 ∞ ∞ −  − = =
Γ∫ ∫  

 
( )

( )1

0

c
p p

bcbc k a ypa c
y e d y

p b

 ∞ + −  − =
Γ ∫                     (15) 

 
By applying the substitution in (12) and its results in (13) into (15), we obtain 
 

 ( ) ( )

1
1

0

bc
kp pp

bc c c
k w

p p

a c w p w
E Y e d w

p b a c a

 
+ − 

  −∞
−

 
 =  Γ  
 

∫  

 
( )

( )
1

0

 
+ −  ∞  + −  − =

Γ ∫

bc
kbc p pkp b

wc
a a

w e d w
b
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 ( )pk

p k
b

c
a b

 Γ + 
 =

Γ
                (16) 

 
For k = 1 and 2, we obtain 

 ( ) ( )p

p
b

c
E Y

a b

 Γ + 
 =

Γ
                (17) 

 ( ) ( )
2

2

2

p

p
b

c
E Y

a b

 Γ + 
 =

Γ
               (18) 

 

Hence the variance of Y denoted as 2
2σ is given by 

 

 ( ) ( )

2

2
2 2

2

p p

p p
b b

c c
a b a b

σ

    Γ + Γ +    
    = −

Γ Γ 
  

               (19) 

 
The mean and variance of the untransformed distribution given in (3) had been obtained by [15] as 
 

 ( ) ( )
1 1

E b
a b c

ξ  
= Γ + Γ  

                (20) 

 
and 

( ) ( ) ( )( ) ( ) ( )

2
22 2

1 2

1 2 1 1
Var E E b b

a b c a b c
σ ξ ξ ξ

    
= = − = Γ + − Γ +    Γ Γ    

        (21) 

 
The means and the variances of the various forms are given in [15]. For the unit mean condition 
and its impact on the variance for the various forms of the distributions under study as obtained by 
[15], see Table 4. 
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Table 4: Condition for Unit Mean and its implication on the Variance of the special cases of the 
original GGD 

Distribution Mean Condition for Unit 
Mean 

Variance 

Gamma (a, b, 1)  b

a
 

a b=
 

1

a
 

Chi- square  n 1n =  2  
 

Exponential  
α  1α =  1.0 

Weibull  1σ
α α

 Γ 
 

 
1α σ= =

 
1.0

 

Rayleigh  

2

πσ  
2σ
π

=
 

( )1
4 0.3π

π
− =  

Maxwell  2
2σ

π
 

1

2 2

πσ =
 

3
1 0.2

8

π − =  

 

Similarly for the various power transformations under study namely, inverse( )2p = , inverse 

square root ( )3
2p = , inverse square ( )3p = and square ( )1p = − , the corresponding means 

and variances of the various distributions under study are obtained and the results are given in 
Tables 5-8 while the means and variances resulting from the applications of the unit mean 
conditions of the untransformed distributions to those of the transformed distributions are given in 
Tables 9-12. 
 

3 RESULTS AND DISCUSSION 
 
Tables 5 through 8 give the theoretical expressions for the mean and variances of the various 
forms after inverse square root, inverse, inverse square and square transformations respectively. It 
is important to note that the mean and variance of the exponential distribution as well as the 
variance of the Rayleigh distribution are undefined (Table 8) for square transformation. In Tables 
9 through 12, the means and variances of the transformed distributions resulting from the 
applications of the unit-mean-conditions for the various forms of the untransformed GGD are 
respectively given for the various transformations: (Table 9 for inverse-square-root; Table 10 for 
inverse; Table 11 for inverse-square; Table 12 for square transformations). It is seen in Table 12 
that the means and variances resulting from the application of the unit-mean-conditions of the 
untransformed distribution to the transformed distribution are positively defined for the Gamma 
(a, b, 1) where a = b > 1, but undefined for the Chi-square, Exponential and Weibull distributions. 
Furthermore the variance of the Rayleigh distribution is not also defined under this condition. 
 
For the inverse-square-root transformation (Table 9), except the Chi-square distribution that has 
mean ≈ 2.0 to the nearest whole number, the means of all the other forms under study are 
approximately unity to the nearest whole number, however, the variances increased. That is 
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2 2
2 1σ σ>  for all the distributions. Here the unit-mean and constant variance assumptions are 

approximately maintained for all the distributions under study except the Chi-square distribution 
where the unit mean assumption is violated. 
 
Table 5: Mean and Variance of the special cases of the original GGD under inverse square root 

transformation 
3

2
=p   

Distribution Mean ( )E ξ  Variance ( )Var ξ  

     ( ), ,1Gamma a b  

( )
3

2

3
2

 Γ + 
 

Γ

b

a b

 ( )( )

( )

2

33
2

2 3
1 2 2

b
b b b

a
a b

 +  Γ  + +   −
 Γ  

 

Chi- square  3
2 3

2
2

2

n

n

+ Γ 
 
 Γ 
 

 ( )( )

2
3

2
2 4 8

2

 +  Γ  
  + + −
  Γ    

n

n n n
n

 

Exponential  3
23 1

4 2
α  Γ 

 
 

2

3 3 1
3 8

16 2
α

   − Γ   
    

 

 
Weibull  

3

2 3 3

2 2
σ

α α
 

Γ 
 

 
2

3 3 3 3 3

4 2
σ

α α α α

     Γ − Γ   
     

 

Rayleigh  3 3
2 4

7
2

4
σ  Γ 

 
 

23
3 2 5 7
2

2 4
σ

     Γ − Γ     
      

 

Maxwell  
3 3
2 4

9
42
3
2

σ

 Γ 
 
 Γ 
 

 

2

3
3 2

9
4 42
1 3
2 2

σ

   Γ   
   −

     Γ Γ     
     

 

 

For the inverse transformation (Table 10), only the means of the Rayleigh and Maxwell 
distributions are approximately 1.0, others have mean 2.0≥ to the nearest whole number. Also 

2 2
2 1σ σ> for all the distributions. Here the unit-mean assumptions are violated except for the 

Rayleigh and Maxwell distributions. 
  
Furthermore, for the inverse-square transformation (Table 11), they were increases in the 

variances, 2 2
2 1σ σ> for all the distributions however the means are all 2.0≥ to the nearest 
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whole number. Under this transformation, the unit-mean assumption is violated for all the 
distributions under study. 
 
Finally, for the square transformation (Table 12), either the mean or the variance or both are 
undefined for the various distributions except the Maxwell distribution that maintained the unit 
mean even though its variance increased after the transformation. Here it is only the Maxwell 
distribution that maintained the unit-mean assumption. 
 

Table 6: Mean and Variance of the special cases of the original GGD under inverse  
transformation 2=p  

Distribution Mean ( )E ξ  Variance ( )Var ξ  

     

( ), ,1Gamma a b  
( )

2

1b b

a

+
 

( ) ( )( ) ( )4

1
2 3 1

b b
b b b b

a

+
+ + − +    

Chi- square  ( )2n n+  ( ) ( )( ) ( )2 4 6 2n n n n n n+ + + − +   

Exponential  32α  ( )4 24 6α α−  

 
Weibull  

22 2σ
α α

 
Γ 
 

 
2

44 4 1 2σ
α α α α

     Γ − Γ   
     

 

Rayleigh  22σ  44σ  
Maxwell  23σ  46σ  

  
Table 7: Mean and Variance of the special cases of the original GGD under inverse  
square transformation 3=p  

Distribution Mean ( )E ξ  Variance ( )Var ξ  

     

( ), ,1Gamma a b  
( )( )

3

1 2b b b

a

+ +
 

( )( ) ( )( )( ) ( )( )6

1 2
3 4 5 1 2

b b b
b b b b b b

a

+ +
+ + + − + +    

Chi- square  ( )( )2 4n n n+ +  ( )( ) ( )( )( ) ( )( )2 4 6 8 10 2 4n n n n n n n n n+ + + + + − + +    

Exponential  36α  6684α  
 

Weibull  
33 3σ

α α
 

Γ 
 

 
2

63 6 3 3
2

σ
α ε α α

     Γ − Γ   
     

 

Rayleigh  33 1

22

σ  
Γ 
 

 
2

6 3 1
3 16

2 2
σ

   
 − Γ  
    

 

Maxwell  38 2
1
2

σ
 Γ 
 

 
6

2

128
105

1
2

σ

 
 
 −
    Γ  
    
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Table 8: Mean and Variance of the special cases of the original GGD under square 
 transformation 1= −p  

Distribution Mean ( )E ξ  Variance ( )Var ξ  

     

( ), ,1Gamma a b  1

a

b−
 

( ) ( )
2 1 1

1 1 2

a

b b b

 
− − − − 

 

Chi- square  1

2n−
 

( ) ( )
1 1 1

2 4 2n n n

 
− − − − 

 

Exponential  Undefined
 

Undefined
 

 
Weibull  

1 1
1 , 1α

σ α
 

Γ − > 
 

 
2

2

1 2 1
1 1 , 2α

σ α α

     
 Γ − − Γ − >    
      

 

Rayleigh  1 1

22σ
 

Γ 
 

 Undefined

 

Maxwell  

( )1
2

2

σ Γ
 

( )( )22
1
2

1 2
1

σ

 
 −
 Γ 

 

 

4 CONCLUSION 
 
In this study, we investigated the implication of power transformations namely, inverse-square-
root, inverse, inverse-square and square transformations on the unit-mean and constant variance 
assumptions of the error component of the multiplicative error model. The distributions of the 
error component studied were the various forms of the generalized gamma distribution namely 
Gamma (a, b, 1), Chi-square, Exponential, Weibull, Rayleigh and Maxwell distributions. The 
purpose of the study is to investigate on whether the unit-mean and constant variance assumptions 
necessary for modeling using the multiplicative error model are either violated or retained after 
the various power transformations. Firstly, the functions describing distributional characteristics 
of interest for the generalized power transformed error component were established and secondly 
the unit-mean conditions of the untransformed distributions were applied to the established 
functions with a view to studying their impacts on the transformed distribution. From the results 
of the study, the following were discovered; 
 

(i)  For the inverse-square-root transformation (Table 9), except the Chi-square distribution 
that has mean ≈ 2.0 to the nearest whole number and the Gamma(a,b,1) whose mean and 
variance depends on the parameter a (a=b), the means of all the other forms under study 

are approximately unity. However, the variances increased. That is 2 2
2 1σ σ>  for all 

the distributions. Here the unit-mean and constant variance assumptions are 
approximately maintained for all the distributions under study except the Chi-square 
distribution where it is violated. 
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(ii)  For the inverse transformation (Table 10), only the means of the Rayleigh and Maxwell 
distributions are approximately 1.0, others have mean2.0≥  to the nearest whole 

number. Also 2 2
2 1σ σ>  for all the distributions. Here the unit-mean assumptions are 

violated except for the Rayleigh and Maxwell distributions.  
(iii)  For the inverse-square transformation (Table 11), there were increases in the variances 

after transformation. That is 2 2
2 1σ σ>  for all the distributions however the means are 

all 2.0≥ to the nearest whole number. Under this transformation, the unit-mean 
assumption is violated for all the distributions under study. 

(iv) For the square transformation (Table 12), either the mean or the variance or both are 
undefined under the application of the unit mean condition for the Chi-square, 
Exponential, Weibull and Rayleigh distributions however the Maxwell distribution 
maintained the unit mean assumption even though its variance increased after the 
transformation. Here it is only the Maxwell distribution that maintained the unit-mean 
assumption. Finally it is important to note that under this transformation the mean and 
variance of the Gamma (a,b,1) are positively defined for a >1.  

 
Table 9: Application of the Unit Mean condition of the original GGD and its implications  

on the Mean and Variance of the special cases under inverse square root transformation 
3

2
=p   

Distribution Unit mean of 
the 

Untransforme
d Distribution 

Mean ( )E ξ  Variance ( )Var ξ  

     

( ), ,1Gamma a b

 

b a=

 

( )
( )3

2

3
2Γ +

Γ

a

a a
 ( )( ) ( )

( )

2

3
2

32
2

1 2
 
Γ ++ +  − 

Γ  

aa a

a
a a

 

Chi- square  n 1=

 

( )
( )

1
2

1
2

2 2
1.6

Γ
=

Γ
 ( ) ( ) ( )

( )

2
3

2

2

2 4 8 12.5
+ Γ

 + + − =
Γ  

n

n
n n n

 
Exponential  1α =

 
( )3 1

4 2 1.3Γ =  ( ) 23 3 1
16 23 8 22.2α   − Γ =   

 

 
Weibull  

1α σ= =
 

( )3 1 1
2 2 2. 1.3Γ =  ( ) ( )( ) 23 3 3 3 3

4 2 4.2α α α ασ  Γ − Γ =  
 

Rayleigh  2
πσ =

 
( ) ( )

3
32
4 72

42 1.2π Γ =  ( ) ( )( )3
2

23 5 7
2 42 0.7σ  Γ − Γ =  

 

Maxwell  1 2

2
σ

π
=

 

( ) ( )
( )

3
4

3 9
421 2

2 3
2

2 0.5π

Γ
=

Γ
 

( )
( )
( )

3
2

2
9
43

31
2 2

4
2 0.2σ
  Γ
 − =  Γ Γ   
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Table 10: Application of the Unit Mean condition of the original GGD and its implications 
 on the Mean and Variance of the special cases under inverse transformation 2=p  

S/n Distribution Mean ( )E ξ  Variance ( )Var ξ  

1      

( ), ,1Gamma a b  
( )1+a

a
 

( ) ( )( ) ( )3

1
2 3 1

+
+ + − +  

a
a a a a

a
 

2 Chi- square  3 ( ) ( )( ) ( )2 4 6 2

96.0

+ + + − +  

=

n n n n n n
 

3 Exponential  32 2.0α =  ( )4 24 6 1.0α α− =  

4  
Weibull  

( )22 2

2.0

σ
α αΓ

=
 ( ) ( )( )4 24 4 21

20.0

σ
α α αα
 

Γ − Γ 
 

=
 

5 Rayleigh  22 1.3σ =  44 1.6σ =  
6 Maxwell  23 1.2σ =  46 0.9σ =  

 

Table 11: Application of the Unit Mean condition of the original GGD and its implications on the 
Mean and Variance  of the special cases under inverse square transformation 3=p  

Distribution Mean ( )E ξ  Variance ( )Var ξ  

     

( ), ,1Gamma a b  
( ) ( )

2

1 2+ +a a

a
 

( )( ) ( )( )( ) ( )( )5

1 2
3 4 5 1 2

+ +
+ + + − + +  

a a
a a a a a a

a
 

Chi- square  ( ) ( )2 4

15.0

+ +
=
n n n

 
( )( ) ( )( )( ) ( )( )2 4 6 8 10 2 4

10170

+ + + + + − + +  

=

n n n n n n n n n
 

Exponential  36 6.0α =  ( ) ( )( )
6

2
6 3 33

2 684.0α α α
σ
α

 Γ − Γ =  
  

 
Weibull  

33 3
6.0

σ
α α

 
Γ = 
 

 
6684 684.0α =  

Rayleigh  
( )

3
1
2

3
3.8

2

σ Γ =  ( )( ) 26 1
2

3
3 16 0.9

2
σ  

− Γ = 
 

 

Maxwell  

( )
3

1
2

8 2
1.6

σ =
Γ

 

( )( )
6

2
1
2

128
105 3.9σ
 
 − =
 Γ 
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Table 12: Application of the Unit Mean condition of the original GGD and its implications 
 on the Mean and Variance of the special cases under square transformation 1= −p  

Distribution Mean ( )E ξ  Variance ( )Var ξ  

     

( ), ,1Gamma a b  1−
a

a
 

( ) ( )
2 1 1

1 1 2

 
− − − − 

a

a a a
 

Chi- square  *  
 

*
 

Exponential  *
 

*
 

 
Weibull  

*
 

*
 

Rayleigh  1 1
1.0

22σ
 

Γ = 
 

 
*

 

Maxwell  2
1.3

1
2

σ
=

 Γ 
 

 

22

1 2
1 0.9

1
2

σ

 
 
 − =
    Γ  
    

 

Note: * means undefined under the application of the unit mean condition of the 
untransformed distribution 

 
Finally, except for the Gamma (a,b,1) which under the application of the unit mean condition has 
mean and variance that depend on a where a =b, we make the following recommendations based 
on the results of this study; 
 

(i) Inverse-square-root transformation is appropriate for Exponential, Weibull, Rayleigh and 
Maxwell distributed error components. 

(ii) Inverse transformation is appropriate for a data set whose error component belongs to 
Rayleigh or Maxwell distributions. 

(iii) Inverse square transformation is not appropriate for a data set whose error component 
belong to the six studied distributions. 

(iv) Square transformation is only appropriate for a data set whose error component belongs 
to a Maxwell distribution. 
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