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Abstract

Aims: To study the implications of power transformations namielyerse-square-root, invers
inverse-square and square transformations on the errorcemipof the multiplicative error an
determine whether the unit-mean and constant variance assusnpfidhe model are eithe
retained or violated after the transformation.

Methodology: We studied the distributions of the error component under theugg
distributional forms of the generalized gamma distributiomelg; Gamma (a, b, 1), Chi-square,
Exponential, Weibull, Rayleigh and Maxwell distributionse\iirst established the functions
describing the distributional characteristics of intefestthe generalized power transformgd
error component and secondly applied the unit-mean conditionghef untransformed
distributions to the established functions.

Results: We established the following important results in modelingguai multiplicative errof
model, where data transformation is absolutely nece¢lalipr the inverse-square-ropt
transformation, the unit-mean and constant variance assums@re approximately maintained
for all the distributions under study except the Chi-sqdastibution where it was violated. (if)
For the inverse transformation, the unit-mean assumptiongi@deded after the transformatign
except for the Rayleigh and Maxwell distributions. (ikor the inverse-square transformation,
the unit-mean assumption is violated for all the distrdmgiunder study. (iv) For the squdre
transformation, it is only the Maxwell distribution thratintained the unit-mean assumption. (v)
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For all the studied transformations the variances of #restormed distributions were found to
be constant but greater than those of the untransformieidbufion.

Conclusion: The results of this study though restricted to the digiobal forms of the
generalized gamma distribution, however they provide a usefmiework in modeling fo
determining where a particular power transformation iscessful for a model whose errpr
component has a particular distribution.
Keywords: Error component; mean; multiplicative errad®l; power transformation; variance.

1 Introduction

A multiplicative error model (MEM) is defined K¥] as
X on = M€ (1)

where X', is a real-valued, discrete time stochastic processeton [0, +o), /4 , defined
conditionally onW _, = ,u(H, ‘PH) is a positive quantity that evolves deterministically
according to the parameter vect@, W, _;is the information available for forecasting tAON

and ¢,is a random variable with a probability density functionirdef over a [0, %) support

with unit mean and unknown constant variarn'fef,. That is
&~V (1o3) @)

There is no question that the distribution of, in (1) can be specified by means of any
probability density function (pdf) having the characteristitg2). Examples are Gamma, Log-
Normal, Weibull, and mixtures of them [1]). [2] favor aa@ma ((p,(p) (which implies

o?= ]/(0); [3], in Autoregressive Conditional Duration (ACD) de framework considered a
Weilbull T ((1+9) ™.¢9) (in this caseg =T (1+2¢)/ T ((1+¢) >~ 1)). As a result of

the above suggested specifications, the error compaﬁ@rﬂ: & would be generally studied
under the generalized gamma distribution (GGD) which accotdif#g can be represented by

_ac(a&)* et
) r(b)

f(&) ,E>0 €)

where a (a shape parameter) and b are real numbers.ic penciple take any real value but
normally we consider the case where @. The reason of using the GGD as the study distribution
is because the various distributional forms (The 3-parangeterma, Chi-square, Exponential,
Weilbull, Rayleigh and Maxwell distributions) of the GGIor various values of a, b and c, have
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the distributional characteristics given in (2). The dstional forms of (3) for various values of
a, b and c are given in Table 1. For more details on thergktized gamma distribution, see [5].

Table 1: Relation of the GGD to other Distributions

SIN | Generalized Gamma Distribution (GG(a, b, c)) a b |c

1 | Gamma(Gammd a l)) a b |1

2 Chi- square 1 n |1
2 2

3 Exponential 1 1 1
a

4 Weibull 1 1 a
g

5 Rayleigh 1 1 2
o2

6 Maxwell 1 3 |2
o2 2

It is not an overstatement to say that statisticsasetl on various data transformatioBasic
statistical summaries such as sample mean, varianseores, histograms, etc., are all
transformed data. Some more advanced summaries suchepgrcomponents, periodograms,
empirical characteristics functions, etc., are alsomgtes of transformed data. According to [6],
“transformations in statistics are utilized for seVewasons, but unifying arguments are that
transformed data”; (i) are easier to report, store aradyae (i) comply better with a particular
modeling framework and (iii) allow for additional insightttee phenomenon not available in the
domain of non-transformed dateor example, variance stabilizing transformations, sytririeg
transformations, transformations to additivity, laplaceurier, Wavelet, Gabor, Wigner-Ville,
Hugh, Mellin, transforms all satisfy one or more of poirgtet in (i — iii).

Many important results in statistical analysis folliram the assumption that the population being
sampled or investigated is normally distributed with a commariance and additive error
structure. For the multiplicative error model where noitypassumption is out of the question,
the assumptions of interest are that the error componasnuriia mean and constant variance.
When the relevant theoretical assumptions relating to lected method of analysis are
approximately satisfied, the usual procedures can beeappli order to make inferences about
unknown parameters of interest. In situations where therggions are seriously violated several
options are available [7]: (i) Ignore the violation of thewasptions and proceed with the analysis
as if all assumptions are satisfied. (ii) Decide “whahis correct assumption in place of the one
that is violated” and use a valid procedure that takes inmuatthe new assumption. (iii) Design
a new model that has important aspects of the original namdkesatisfies all the assumptions, e.g.
by applying a proper transformation to the data or filtedagsome suspect data point which may
be considered outlying. (iv) Use a distribution-free procedurat is valid even if various
assumptions are violated. For more details on the absteel loptions, see [8].
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Most researchers, however, have opted for (iii) which hescs&d much attention as documented
by [9] and [10] among others. In this study our interestldv@menter on transformation as a
remedy for situations where the assumptions for parasrddta analysis are seriously violated.

Data transformations are the applications of mathentatiodifications to the values of a variable
.However caution should be exercised in the choice of ffedf transformation to be adopted so
that the fundamental structure of the series is ratbded and thereby rendering the interpretation
very difficult or impossible. There are two major methods ¢& dieansformations namely Bartlett
and Box and Cox methods of data transformation, howevesafse of application we would only
consider the Bartlett’s techniques.

[11] used the simple relation between mean and standaratidevover several groups for choice
of appropriate transformation. [12] had shown how to applyl&ts transformation technique to
time series data using the Buys-Ballot table. For ldetei Buys-Ballot table, see [13]. According
to [12], the relationship between variance and mean @wgral groups is what is needed for
choice of appropriate transformation. If we take rand@mples from a population, the means
and standard deviations of these samples will be indeperdedtthus uncorrelated) if the
population has a normal distribution [14]. [12] showed that|8##& transformation for time
series data is to regress the natural logarithms of ¢gineup standard deviations

(5i‘,i =l,2,...m) against the natural logarithms of group meér)_éll,i=l,2,...m) and

determine the slopep of the relationship
log,d, =a+plog, X, +error (4)

For non-seasonal data that require transformation, wé& #pé observed time series
X,,t=1,2,...n chronologically into m fairly equal different parts andompute

(Z, =1, 2,...m) and (&i. =1, 2,...m) for the parts. For seasonal data with the length of

the periodic intervals, s, the Buys-Ballot table ndtyartitions the observed data into m periods
or rows for easy application. [12]) also showed thattlBtt's transformation may also be regarded
as the power transformation

{ log. X, p=1
X, 0P pz1 ®)

Summary of transformations for various valuesfpfis given in Table 2.
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Table 2: Bartlett's Transformation for some valuesof p.

SIN p Required Transformatit
1 0 No transformation
2 1 X,

2
1 log, X,
4 3 1
2 %
5 2 1
xt
6 3 1
X:
7 -1 X2

Recently there are various studies on the effectsaobtormation on the error component of the
multiplicative error models whose distributional charastas is given in (2). The overall aim of
such studies is to establish the conditions for succesahdformation [15]. According to [15&
successful transformation is achieved when the desiraldpegiies of a data set remain
unchanged after transformation. For the MEM where the aliymassumption of the error
component is out of the question, therefore in this studgived be interested in the unit mean
and constant variance assumptions. For the purely multipkctime series model whose error
component in addition to being normally distributed is classifieder the characteristics given in
(2), [16], [17] and [18] had respectively investigated tHeat$ of logarithm, square and inverse

transformations on the error componeﬁt[, , Where ft ~N (1,012) . [16] discovered that the
logarithm transform; Y = Log® ¢ can be assumed to be normally distributed with mean,azeto
the same variance? for o, < 0.1. Similarly [17] discovered that the square tramsfor =¢& tz

is successful in the intervdl< g, < 0.027, whereo , is the standard deviation of the original

error component before transformation whereas [18] deveal that the inverse transform

1

Y = — can be assumed to be normally distributed with mean, onehandaime variance
t

provided o < 0.10.

The application of power transformation to model (1) give

*

Xoon = M & 6)
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* p * *
whereX tION — (Xt,tDN) = Xpt,tDN’ Mo = :lltp’ .= (Ex)p =4 Pand
p + 2 — 1 3 ‘
3 ~V2(1,02),p——1,§,1,5,2,‘ @)

where &, P is the generalized power transformed error componemibdil (1). The most popular

power transformations ardog, X, ,,/ X, ,1/X, ,Xf and 1/Xt2 .The results of the

transformations on model (1) are given in Table 3. The Idgariransformatiorconverts the
multiplicative error model (1) to the additive model lehthe other listed transformations leave
the model still multiplicative. For the logarithm transfation

Y, =log, X, =log, p,+log.& =u, + &, ()
In Table 3 the following notations were adopted

Y, = Transformed observed series
,ut* = The Transformed function of/,
Et* = Transformed error component
It is clear from Table 3, that only the logarithm transfation alters the assumptions placed on

the error component of the multiplicative error model asé aesult interest in this paper would
be centered on the transformations that leaves model (Ipstiiplicative.

Table 3: Transformations of the multiplicative Error Model

Y L & Model for Y, Assumption ong
0. X |log.z log.&, | Additve &~vi(0a?)
X Ju A Multiplicative &~Vi(10%)
X i ¢ Multiplicative & ~V;(10%)
X2 7 & Multiplicative & ~V;(10%)
ux | 1n 1, J& | Muliplicative & ~V3(107)
1% Ui 182 Multiplicative &~Vi(10%)
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Since model (6) is still a multiplicative error modeldathereforeE: must also be characterized

with unit mean and some constant varianrre?2 which may or may not be equalabf . Thus, in

this paper, we want to study the effect of power transftions on a non-normal distributed error
component of a multiplicative error model whose distributicctearacteristics belong to the
Generalized Gamma distribution. The purpose is to deteriifiinbe assumed fundamental
structure of the error component (unit mean and constai@inea) is maintained after the power

transformation and also to investigate what happensftf) and 0; in terms of equality or non-

equality. According to [15], the overall reason for concirig on the error component of model
(6) is as plane as the nose on the face: the reason i©i¢hasdumptions for model analysis are
always placed on the error component.

In this fertile academic minefield, [15] had studied thelicgion of square root transformation
on the unit mean and constant variance assumption® @rtbr component of model (1) whose
distributional characteristics belong to the Generalizathma Distribution for the various forms;
Chi-square, Exponential, Gamma (a, b, 1), Weibull, Maxwell Rayleigh distributions. From the
results of the study, the unit mean assumption is approdimataintained for all the given
distributional forms of the GGD. However there were réidns in the variances of the
distributions except those of the Gamma (a, b, 1), fodaRayleigh and Maxwell that increased,
hence they concluded that square-root transformation isppobpriate for multiplicative error
model with a Gamma (a, b, 1) for a > 1 or Rayleigh oxwll distributed error component.
Finally, [15] recommended that square-root transformatidrere applicable for a multiplicative
error model are successful for the studied distributions ifvéireance of the transformed error
component < 0.5.

Out of the six popular power transformations namely logawitsquare root, inverse, inverse
square root, square and inverse square, only the effacfuafe root transformation on the error
component of the multiplicative error model with regard td oréan and constant variance had
been studied by [15], leaving the others yet to be studie@r&lh the logarithm transformation
converts the multiplicative error model to an additivedel, the others still leave it multiplicative
therefore in this paper we study the effect of the grotransformations namely; inverse square
root, inverse, inverse square and square on the error conipdrtee multiplicative error model
with the overall aim of investigating on what happens to thie mean and constant variance
assumptions after the transformations. This study woulddrged out under the generalized
gamma distribution considering that all the suggestedisivns of the error component of the
multiplicative error model ([1]; [2];[3]) are the vars forms of the generalized gamma
distribution.

This paper is organized as follows; Section One containgtiteeluction while the distributional
characteristics of the generalized power transformear @ne contained in Section Two. While

the results of the study are in Section three, the copdusacknowldgements, authors
contributions and references are respectively containeédtioBs four, five, six and seven..

For simplicity, the notatiorf, = ¢ andY, = Y would be adopted.
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2 DISTRIBUTIONAL CHARACTERISTICS OF THE
GENERALIZED POWER TRANSFORMED ERROR
COMPONENT

Suppose the distributional characteristics€obelongs to the generalized gamma distribution

whose probability density function denoted ﬁ{{ ) is (3), let

y=¢° 9)

where p is a power transformation, therefore
and

therefore based on the result in [14], the probability itefinction of y would be given by
1 c
be Slbe) ‘[apr
‘cyP e
r(b)

£
p

a 1
-y
p

f(y)=

areayn gl

pr(b)

(10) is a probability density function (pdf) and in whatdals, we have to show that its integral is

,y>0 (10)

[

unity ( That is,f f (y) d y=1). We proceed as follows;
0

Tf(y)d y= 2 I Jb"c_lj )" g (1)
0 pr(b)3
By adopting the substitution

w=(a’ y)?, 0< weeo (12)
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in (10) we have the following results

P Py P,
we dy p W p W

= ; — = ; =——d 13

y a’ w ca’ cad " (13)

Now substituting the results in (12) and (13) into (11) Wiaio

5

o P p B_l

a CJ- we o p W
0

? e dw (14)

After a series of algebraic evaluation in (14) we have tha

frinay= et <

Having shown that (10) is a proper pdf by showing that itgratds unity, we now proceed to
obtain its generalized"kmoment as follows, where k is a positive integer: By dedini

E(Yk) = T ¥ f( )& d y, hence
0

_ a"c Ty(lf*k]'le-(apy); dy (15)

By applying the substitution in (12) and its results in) (b8 (15), we obtain

b £ [%+k_l] 2y
a’‘c ¢l we W PW
)=l e | e @
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r(b+P¥]
-\ ¢/

a®r(b) (16
For k=1 and 2, we obtain
r (b+pj
E(Y) = aT(Cb) 17
r(b+2pj

E(Y?) = W(Cb) (18)

Hence the variance of Y denoteda§ is given by

2] (o]

o= c/_ c (19)

* a’r(b) a’r (b

The mean and variance of the untransformed distribution givé€3) had been obtained by [15] as

__ 1 1
E(¢)= ) r[b+ CJ (20)
and

o2=Var(€) = E(&?)( E(f))zzﬁr( b+2cj - {ar—(lk»r( |o+—1cﬂ2 (21)

The means and the variances of the various forms are gii@s]i For the unit mean condition
and its impact on the variance for the various formsefiiktributions under study as obtained by
[15], see Table 4.
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Table 4: Condition for Unit Mean and its implication on the Variance of the special cases of the
original GGD

Distribution Mean Condition for Unit Variance
Mear
Gamma (a, b, 1) b a=b 1
a a
Chi- square n n=1 2
a a=1 1C
Exponential
Weibull fr[ij a=1=0 10
a \a
Rayleigh T 2 1 -
o o= 1% —(4-m) =02
2 £ |
Maxwell
o 20—F o= }\ﬁ’ 37 4-02
m 2\ 2 8

Similarly for the various power transformations under ptodmely, inversép =2), inverse

square roo( p 2%) inverse squarép =3) and square( p =—1), the corresponding means

and variances of the various distributions under studyobrained and the results are given in
Tables 5-8 while the means and variances resulting fromapipéications of the unit mean
conditions of the untransformed distributions to thosénefttansformed distributions are given in
Tables 9-12.

3 RESULTS AND DISCUSSION

Tables 5 through 8 give the theoretical expressions for the amrvariances of the various
forms after inverse square root, inverse, inverse squarscurare transformations respectively. It
is important to note that the mean and variance of tip@reential distribution as well as the
variance of the Rayleigh distribution are undefined (Tapl®Bsquare transformation. In Tables
9 through 12, the means and variances of the transfornsdbdiions resulting from the
applications of the unit-mean-conditions for the variousnfo of the untransformed GGD are
respectively given for the various transformations: (Tabfer 9nverse-square-root; Table 10 for
inverse; Table 11 for inverse-square; Table 12 for squansformations). It is seen in Table 12
that the means and variances resulting from the applicafidghe unit-mean-conditions of the
untransformed distribution to the transformed distributionpmstively defined for the Gamma
(a, b, 1) where a = b > 1, but undefined for the Chi-squaregriexgial and Weibull distributions.
Furthermore the variance of the Rayleigh distributioroisatso defined under this condition.

For the inverse-square-root transformation (Table 9), eéxbepChi-square distribution that has

mean~ 2.0 to the nearest whole number, the means of all the &has under study are
approximately unity to the nearest whole number, howewer,variances increased. That is
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Jg > 012 for all the distributions. Here the unit-mean and constariance assumptions are

approximately maintained for all the distributions under studyept the Chi-square distribution
where the unit mean assumption is violated.

Table 5: Mean and Variance of the special cases tife original GGD under inverse square roof

. 3
transformation p = >

Distribution Mean E(¢) VarianceVar(§)
Gammd a ) F(b +3) r(2b+3 2
2 b(b+1)(b+2) 2
azr(b) & agr(b)
Chi- square 22 F(mj F(M)
n(n+2)(+4) -8 ——2

Exponential 3
EGZF(—lj 307 8-> r[—lj
4 2 16| \ 2
23 (3 2
Weibull UZ—F(—j 3 r(éj_i rl_3
20 \2a al \a) 4a 2
Rayleigh 3 3 2
yien 0224 Zj 0322 r[;r)j_ r(Zj
4 2 4
Maxwell 9 2
: 3r[4j 3 F(gj
g22¢ % o024 | \4)

For the inverse transformation (Table 10), only the mednsh® Rayleigh and Maxwell
distributions are approximately 1.0, others have mead.Oto the nearest whole number. Also

Jg > Jffor all the distributions. Here the unit-mean assumptiopsvaniated except for the
Rayleigh and Maxwell distributions.

Furthermore, for the inverse-square transformation (Table thEy were increases in the
variances,ag > Jffor all the distributions however the means arealP.0Oto the nearest
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whole number. Under this transformation, the unit-mean agstomps violated for all the
distributions under study.

Finally, for the square transformation (Table 12), eittier mean or the variance or both are
undefined for the various distributions except the Maxwell distributfiat maintained the unit

mean even though its variance increased after the doramsfion. Here it is only the Maxwell
distribution that maintained the unit-mean assumption.

Table 6: Mean and Variance of the special cases thie original GGD under inverse
transformation p =2

Distribution Mean E(E)
b(b+1) b(b+1)

Gam atl) | O (b+2)(b+3-t{ 0]

Ci-sare | o(neg) | (mal[(ne4(nr 8- v3]

VarianceVar(¢)

Exponential 2q4° 40'4(6—0'2)

20° (2 4’| (&) 1 [ 2\
Weibull —F(—] r(_j__ 2

a \a a a) al la
Rayleigh 202 40"
Maxwell 302 60*

Table 7: Mean and Variance of the special cases thie original GGD under inverse
square transformation p =3

Distribution [ Mean E(¢) VarianceVar (&)

o at) | 272 | B 5 ) - ) b 4]
Chi- square | n(n+2)(n+4) n(n+2)(n+4)[( nme(ng(n-10-f m Y = ﬂ
Exponential 6a° 684a°

Weibull 3%:3 F[ 2) 32’:{%[3 —5(r[3ﬂ
BRI
Maxwell 8032 r
r 6 _
(1) 9105 128 2]
2 )
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Table 8: Mean and Variance of the special cases thie original GGD under square

transformation p=-1

Distribution Mean E(¢) VarianceVar(é)
2 a1 1
Gammy 2 k) b-1 b-1 (b1 (b-2
Chi- square 1 1 [ 11
-2 n-2 ("4 (3
Exponential Undefinec Undefinec
| 1.1 1 2 1))
Weibull O_F(l aJ,H>1 = I'( _71]_( I'[l—;D a>2
Rayleigh 1 1 .
——rl= Undefined
713
Maxwell J2 1 . 5
of (4 215
. | (rer

4 CONCLUSION

In this study, we investigated the implication of powansformations namely, inverse-square-
root, inverse, inverse-square and square transformations onitireeam and constant variance
assumptions of the error component of the multiplicagu®r model. The distributions of the
error component studied were the various forms of theergdized gamma distribution namely
Gamma (a, b, 1), Chi-square, Exponential, Weibull, Rglgleand Maxwell distributions. The
purpose of the study is to investigate on whether the unit-sre@digonstant variance assumptions
necessary for modeling using the multiplicative error madeleither violated or retained after
the various power transformations. Firstly, the fumtdi describing distributional characteristics
of interest for the generalized power transformedrezomponent were established and secondly
the unit-mean conditions of the untransformed distributionse vapplied to the established
functions with a view to studying their impacts on the tf@msed distribution. From the results

of the study, the following were discovered;

(i) For the inverse-square-root transformation (Tablee23ept the Chi-square distribution
that has mean 2.0 to the nearest whole number and the Gamma(a,b,1) whoeeantka
variance depends on the parameter a (a=b), the mearngh# ather forms under study

are approximately unity. However, the variances increabedlt isag > 012 for all

the distributions.

Here the unit-mean and constant variancemptisns are

approximately maintained for all the distributions under tagcept the Chi-square

distribution where it is violated.
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(i) For the inverse transformation (Table 10), only theans of the Rayleigh and Maxwell
distributions are approximately 1.0, others have neah(Q to the nearest whole

number. Alsoag > 012 for all the distributions. Here the unit-mean assumptames

violated except for the Rayleigh and Maxwell distribnto
(iii) For the inverse-square transformation (Table 1igre were increases in the variances

after transformation. That isri > 012 for all the distributions however the means are

all = 2.0to the nearest whole number. Under this transformation, utiiemean

assumption is violated for all the distributions under study.

(iv) For the square transformation (Table 12), eitlier inean or the variance or both are
undefined under the application of the unit mean condition far €hi-square,
Exponential, Weibull and Rayleigh distributions however thexwWell distribution
maintained the unit mean assumption even though its varianceased after the
transformation. Here it is only the Maxwell distributidmat maintained the unit-mean
assumption. Finally it is important to note that under trassformation the mean and
variance of the Gamma (a,b,1) are positively define@fel.

Table 9: Application of the Unit Mean condition ofthe original GGD and its implications

. . ) . 3
on the Mean and Variance of the special cases undewerse square root transformation p = 5

Distribution | Unit rr?ean of Mean E(¢) VarianceVar(¢)
the
Untransforme
d Distribution
b=a | (ar] :
Gammy a ) 2r( (a+1)(2a+ 2) F£a+ 3)
a ar(a
Chi- square n=1 % I'(”T*B)

Exponential | a=1 r(3) =13 30/3[8—1% [r(lz)ﬂzzz.z
Weibul a=g=1 34r(3)=13 a3§[r(§) - r(g))z}:u
Rajeh | o=2 | () 2r@ee | o2 [r(@-r@) Fo7
= [ b
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Table 10: Application of the Unit Mean condition ofthe original GGD and its implications
on the Mean and Variance of the special cases undaverse transformation p=2

S| Distribution | Mean E(¢) VarianceVar(¢)
1 a+ (a+])
camary| o 1 (a+g (@3- ]
2 | Chi- square 3 n(m2)[(ned)(n+§-rf 3]
=06.0
3 | Exponential | 243=20 40/‘( 6—02) =1(
4 21 (2) 40[ 1 2}
Weibull o e | T —=(T(2
wa | T 9-2re)
=20.0
5 Rayleigh 20% =17 40" =1.€
6 Maxwell 30%=12 60" =0.¢

Table 11: Application of the Unit Mean condition ofthe original GGD and its implications on the
Mean and Variance of the special cases under inv& square transformation p = 3

Distribution Mean E(¢) VarianceVar(¢)
camm )| oz | @@ g s ar - f a2 9]
Chi-square | n(n+2)(n+4) | n(n+2)(n+4)[(n+§(n-§( nr10- o 2( 7 ¥
=15.0 =10170
Exponential 6a° =6.0 3%6[ or(£) - §( r(g))z} oy
Weibull 3%/3 F{gj =6.0 o= 654
Rayleigh 3%3 r)=38 306[16_ g ( r(%))2:| ~oc
Maxwell 8o%2 _
) =16 06{105— (rl(Z;E);)ZJ: X
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Table 12: Application of the Unit Mean condition ofthe original GGD and its implications
on the Mean and Variance of the special cases undguare transformation p =-1

Distribution Mean E(&) VarianceVar(¢)
a a®| 1 1
Cammia)| a-i|ag) (a3
Chi- square * *
Exponential * *
Weibull
Rayleigh *
ov2 \ 2
Maxwell
i]_ =13
1 2
ol —[1-—=—_|=0¢
[2) = 1 Y 0.
G
2

Note: * means undefined under the application ofetunit mean condition of the
untransformed distribution

Finally, except for the Gamma (a,b,1) which undier application of the unit mean condition has

mean and variance that depend on a where a =b,ake the following recommendations based
on the results of this study;

(i) Inverse-square-root transformation is apprdprfar Exponential, Weibull, Rayleigh and
Maxwell distributed error components.

(ii) Inverse transformation is appropriate for aadaet whose error component belongs to
Rayleigh or Maxwell distributions.

(iii) Inverse square transformation is not appraf@ifor a data set whose error component
belong to the six studied distributions.

(iv) Square transformation is only appropriate dodlata set whose error component belongs
to a Maxwell distribution.
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