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Abstract
In this paper, we establish some hyperstability results concerning the monomial functional equation

n∑
r=0

(−1)n−rCnr f(rx+ y) = n!f(x)

in Banach spaces.

Keywords: Hyperstability, monomial functional equation, fixed point theorem.
2010 Mathematics Subject Classification: Primary 39B82, 39B62; Secondary 47H14, 47H10.

1 Introduction
The starting point of studying the stability of functional equations seems to be the famous talk of Ulam
[1],[2] in 1940, in which he discussed a number of important unsolved problems. Among those was
the question concerning the stability of group homomorphisms.

Let G1 be a group and let G2 be a metric group with a metric d(., .). Given ε > 0, does there
exists a δ > 0 such that if a mapping h : G1 → G2 satisfies the inequality d

(
h(xy), h(x)h(y)

)
< δ for

all x, y ∈ G1, then there exists a homomorphismH : G1 → G2 with d
(
h(x), H(x)

)
< ε for all x ∈ G1?

The case of approximately additive mapping was solved by Hyers [3] under the assumption that
G1 and G2 are Banach spaces. Later, the result of Hyers was significantly generalized by Rassias
[4] and Gǎvruta [5]. Since then, the stability problems of several functional equations have been
extensively investigated.

LetX and Y be linear spaces and Y X be the vector space of all functions fromX to Y . Following
[6], for each x ∈ X, define ∆x : Y X → Y X by

∆xf(y) = f(x+ y)− f(y) (f ∈ Y X , y ∈ X).
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Inductively, we define
∆x1,...,xnf(y) = ∆x1,...,xn−1(∆xnf(y))

for each y, x1, ..., xn ∈ X and all f ∈ Y X . If x1 = ... = xn = x, we write

∆n
xf(y) = ∆x, ..., x︸ ︷︷ ︸

n times

f(y)

By induction on n, it can be easily verified that

∆n
xf(y) =

n∑
r=0

(−1)n−rCnr f(rx+ y) (n ∈ N, x, y ∈ X), (1)

where Cnr = n!
(n−r)!r! .

The functional equation
n∑
r=0

(−1)n−rCnr f(rx+ y) = n!f(x) (2)

is called the monomial functional equation of degree n, since the function f(x) = cxn is a solution
of this functional equation. Every solution of the monomial functional equation of degree n is said to
be a monomial mapping of degree n. In particular additive, quadratic, cubic and quartic functions are
monomials of degree one, two, three and four respectively. The stability of monomial equations was
initiated by Hyers in [6]. The problem has been recently considered by many authors, we refer, for
example, to [7], [8], [9], [10] and [11].
Kaiser [12] proved the stability of monomial functional equation where the functions map a normed
space over a field with valuation to a Banach space over a field with valuation and the control function
is of the form ε

(
‖x‖α + ‖y‖α

)
. In 2007, Cădariu and Radu [13] proved the stability of the monomial

functional equation
n∑
i=0

Cni (−1)n−if(ix+ y)− n!f(x) = 0 (3)

In 2008, Lee [14] modified the results of Cădarui and Radu for the stability of the monomial
functional equation (3) in the sense of Rassias and he investigated the superstability of this equation.
In 2010, Mirmostafaee [15] proved the Hyers-Ulam stability of monomial functional equation of an
arbitrary degree in non-Archimedean normed spaces over a field with valuation and the control
function ϕ(x, y).
In 2014, Almahalebi, Sirouni, Charifi and Kabbaj [16] proved the fuzzy stability of the monomial
functional equation with the control function is of the form N ′

(
ϕ(x, y), t

)
where N ′ is a fuzzy norm.

We say a functional equation D is hyperstable if any function f satisfying the equation D approximately
is a true solution of D. It seems that the first hyperstability result was published in [17] and concerned
the ring homomorphisms. However, The term hyperstability has been used for the first time in [18].
Quite often the hyperstability is confused with superstability, which admits also bounded functions.

Numerous papers on the hyperstability of functional equations have been published by different
authors, we refer, for example, to [19], [20], [21], [22], [23], [24] and [25].

In this paper, we present the hyperstability results for the monomial functional equation (2). The
method of the proofs used in the main results is based on a fixed point result that can be derived from
[Theorem 1 [26]]. To present it we need the following three hypothesis:

(H1) X is a nonempty set, Y is a Banach space, f1, ..., fk : X −→ X and L1, ..., Lk : X −→ R+

are given.
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(H2) T : Y X −→ Y X is an operator satisfying the inequality∥∥∥T ξ(x)− T µ(x)
∥∥∥ ≤ k∑

i=1

Li(x)
∥∥∥ξ(fi(x)

)
− µ

(
fi(x)

)∥∥∥, ξ, µ ∈ Y X , x ∈ X.

(H3) Λ : RX+ −→ RX+ is a linear operator defined by

Λδ(x) :=

k∑
i=1

Li(x)δ
(
fi(x)

)
, δ ∈ RX+ , x ∈ X.

The following theorem is the basic tool in this paper. We use it to assert the existence of a unique
fixed point of operator T : Y X −→ Y X

Theorem 1. Let hypotheses (H1)-(H3) be valid and functions ε : X −→ R+ and ϕ : X −→ Y fulfil
the following two conditions

‖T ϕ(x)− ϕ(x)‖ ≤ ε(x), x ∈ X,

ε∗(x) :=
∞∑
n=0

Λnε(x) <∞, x ∈ X.

Then there exists a unique fixed point ψ of T with

‖ϕ(x)− ψ(x)‖ ≤ ε∗(x), x ∈ X.

Moreover
ψ(x) := lim

n→∞
T nϕ(x), x ∈ X.

2 Hyperstability Results
The following theorems are the main results in this paper and concern the hyperstability of equation
(2).

Let X be a normed space, Y be a Banach space, θ ≥ 0, p < 0 and let f : X −→ Y satisfy∥∥∥∥∥
n∑
r=0

(−1)n−rCnr f(rx+ y)− n!f(x)

∥∥∥∥∥ ≤ θ(‖x‖p + ‖y‖p
)

(4)

for all x, y ∈ X \ {0}. Then f is a monomial mapping of degree n on X \ {0}.

Proof. Replace x by (m+ 1)x and y by −mx, where m ∈ N, in (4). We get that

∥∥∥∥∥f(x)− 1

n
f(−mx) + (−1)n(n− 1)!f

(
(m+ 1)x

)
+

1

n

n∑
r=2

(−1)r−1Cnr f
((

(r − 1)m+ r
)
x
)∥∥∥∥∥

≤ θ

n

(
(m+ 1)p +mp

)
‖x‖p (5)

for all x ∈ X \ {0}.

Further put

Tmξ(x) :=
1

n
f(−mx)− (−1)n(n− 1)!f

(
(m+ 1)x

)
− 1

n

n∑
r=2

(−1)r−1Cnr f
((

(r − 1)m+ r
)
x
)
,
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and
εm(x) :=

θ

n

(
(m+ 1)p +mp

)
‖x‖p

for all x ∈ X \ {0}, ξ ∈ Y X\{0}. Then, the inequality (5) takes the following form

‖Tmf(x)− f(x)‖ ≤ εm(x), x ∈ X \ {0}.

The following linear operator

Λmδ(x) :=
1

n
δ(−mx)+(n−1)!δ

(
(m+1)x

)
+

1

n

n∑
r=2

Cnr δ
((

(r−1)m+r
)
x
)
, δ ∈ RX\{0}+ , x ∈ X\{0}

has the form described in (H3) with k = n+ 1 and
fn+1(x) = −mx, f1(x) = (m+ 1)x, fr(x) =

(
(r − 1)m+ r

)
x,

Ln+1(x) = 1
n
, L1(x) = (n− 1)!, Lr(x) = 1

n
Cnr where r = 2, 3, ..., n, for x ∈ X \ {0}.

Moreover, for every ξ, µ ∈ Y X\{0}, and every x ∈ X \ {0}, we have

∥∥∥Tmξ(x)−Tmµ(x)
∥∥∥ =

∥∥∥∥∥ 1

n
ξ(−mx) + (−1)n(n− 1)!ξ

(
(m+ 1)x

)
− 1

n

n∑
r=2

(−1)r−1Cnr ξ
((

(r − 1)m+ r
)
x
)

− 1

n
µ(−mx)− (−1)n(n− 1)!µ

(
(m+ 1)x

)
+

1

n

n∑
r=2

(−1)r−1Cnr µ
((

(r − 1)m+ r
)
x
)∥∥∥

≤ 1

n

∥∥∥(ξ − µ)(−mx)
∥∥∥+ (n− 1)!

∥∥∥(ξ − µ)
(

(m+ 1)x
)∥∥∥+

1

n

n∑
r=2

Cnr

∥∥∥(ξ − µ)
((

(r − 1)m+ r
)
x
)∥∥∥

=

n+1∑
i=1

Li(x)
∥∥∥ξ(fi(x)

)
− µ

(
fi(x)

)∥∥∥
and so (H2) is valid. Next, we can find m0 ∈ N such that

αm =
mp

n
+ (n− 1)!(m+ 1)p +

1

n

n∑
r=2

Cnr

(
(r − 1)m+ r

)p
< 1

for all m ≥ m0. Therefore, we have

ε∗m(x) :=

∞∑
s=0

Λsmεm(x)

=

∞∑
s=0

Λsm

(
θ

n

(
(m+ 1)p +mp

)
‖x‖p

)

=
θ

n

(
(m+ 1)p +mp

) ∞∑
s=0

(
mp

n
+ (n− 1)!(m+ 1)p +

1

n

n∑
r=2

Cnr

(
(r − 1)m+ r

)p)s
‖x‖p

=
θ
(

(m+ 1)p +mp
)
‖x‖p

n(1− αm)

for all x ∈ X \ {0} and m ≥ m0.
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Thus, according to Theorem 1, for eachm ≥ m0 there exists a unique solution Fm : X\{0} −→ Y
of the equation

Fm(x) =
1

n
Fm(−mx)− (−1)n(n− 1)!Fm

(
(m+ 1)x

)
− 1

n

n∑
r=2

(−1)r−1Cnr Fm
((

(r − 1)m+ r
)
x
)

such that ∥∥∥f(x)− Fm(x)
∥∥∥ ≤ θ

(
(m+ 1)p +mp

)
‖x‖p

n(1− αm)

for all x ∈ X \ {0} and m ≥ m0. Moreover,

Fm(x) := lim
s→∞

T smf(x), x ∈ X \ {0}.

To prove that Fm(x) satisfies (2) on X \ {0}, observe that∥∥∥∥∥
n∑
r=0

(−1)n−rCnr T smf(rx+ y)− n!T smf(x)

∥∥∥∥∥ ≤ θαsm(‖x‖p + ‖y‖p
)

(6)

for all x, y ∈ X \ {0} and all s ∈ N.
Indeed, if s = 0, then (6) is simply (4). So, take t ∈ N0 and suppose that (6) holds for s = t and all
x, y ∈ X \ {0}. Then

∥∥∥∥∥
n∑
k=0

(−1)n−kCnk T t+1
m f(kx+ y)− n!T t+1

m f(x)

∥∥∥∥∥ =

∥∥∥∥∥
n∑
k=0

(−1)n−kCnk

{
1

n
T tmf

(
−m(kx+ y)

)

−(−1)n(n− 1)!T tmf
(

(m+ 1)(kx+ y)
)
− 1

n

n∑
r=2

(−1)r−1Cnr T tmf
((

(r − 1)m+ r
)
(kx+ y)

)}

−n!

{
1

n
T tmf(−mx)− (−1)n(n− 1)!T tmf

(
(m+ 1)x

)
− 1

n

n∑
r=2

(−1)r−1Cnr T tmf
((

(r − 1)m+ r
)
x
)}∥∥∥

≤ 1

n

∥∥∥∥∥
n∑
k=0

(−1)n−kCnk T tmf
(
−m(kx+ y)

)
− n!T tmf(−mx)

∥∥∥∥∥
+(n− 1)!

∥∥∥∥∥
n∑
k=0

(−1)n−kCnk T tmf
(

(m+ 1)(kx+ y)
)
− n!T tmf

(
(m+ 1)x

)∥∥∥∥∥
+

1

n

n∑
r=2

Cnr

∥∥∥∥∥
n∑
k=0

Cnk T tmf
((

(r − 1)m+ r
)
(kx+ y)

)
− n!T tmf

((
(r − 1)m+ r

)
x
)∥∥∥∥∥

≤ θαtm

(
mp

n
+ (n− 1)!(m+ 1)p +

1

n

n∑
r=2

Cnr
(
(r − 1)m+ r

)p)(‖x‖p + ‖y‖p
)

= θαt+1
m

(
‖x‖p + ‖y‖p

)
.

By induction, we shown that (6) holds for all x, y ∈ X \ {0} and all s ∈ N0. Letting s −→∞ in (6),
we show that

n∑
r=0

(−1)n−rCnr Fm(rx+ y)− n!Fm(x) = 0

2689



Almahalebi et al.; JSRR, Article no. JSRR.2014.20.006

for all x, y ∈ X \ {0}. Thus, we have proved that, for every m ≥ m0, there exists a unique mapping
Fm : X \ {0} → Y such that Fm is a monomial mapping of degree n on X \ {0} and∥∥∥f(x)− Fm(x)

∥∥∥ ≤ θ
(
(m+ 1)p +mp

)
n(1− αm)

‖x‖p

for all x ∈ X \ {0}.
Since p < 0, the sequence

{
θ((m+1)p+mp)

n(1−αm)
‖x‖p

}
m≥m0

tends to zero when m −→ ∞. Consequently,

f is a monomial mapping of degree n on X \ {0} as the pointwise of {Fm}m≥m0 .

In a similar way we can prove the following theorem
Let X be a normed space, Y be a Banach space, θ ≥ 0, p, q ∈ R, p+ q < 0 and let f : X −→ Y

satisfy ∥∥∥∥∥
n∑
r=0

(−1)n−rCnr f(rx+ y)− n!f(x)

∥∥∥∥∥ ≤ θ‖x‖p‖y‖q (7)

for all x, y ∈ X \ {0}. Then f is a monomial mapping of degree n on X \ {0}.

Proof. Since p+ q < 0, one of p, q must be negative. Assume that q < 0 and replace y by mx where
m ∈ N, in (7). Then we get∥∥∥∥∥ 1

n!

n∑
r=0

(−1)n−rCnr f
(

(r +m)x
)
− f(x)

∥∥∥∥∥ ≤ θmq

n!
‖x‖p+q (8)

for all x ∈ X \ {0}.
Similarly, we define

Tmξ(x) :=
1

n!

n∑
r=0

(−1)n−rCnr ξ
(

(r +m)x
)
, x ∈ X \ {0}, ξ ∈ Y X\{0},

εm(x) :=
θmq

n!
‖x‖p+q, x ∈ X \ {0},

Λmδ(x) :=
1

n!

n∑
r=0

Cnr δ
(

(r +m)x
)
, x ∈ X \ {0}, δ ∈ RX\{0}+ .

and as in Theorem 2 we observe that (8) takes the form∥∥∥Tmf(x)− f(x)
∥∥∥ ≤ εm(x), x ∈ X \ {0}

and Λm has the form described in (H3) with k = n+ 1 where

fi(x) = (i− 1 +m)x and Li(x) = 1
n!
Cni−1 where i = 1, ..., n+ 1 for x ∈ X \ {0}.

Moreover, for every ξ, µ ∈ Y X\{0}, x ∈ X \ {0} we have

∥∥∥Tmξ(x)− Tmµ(x)
∥∥∥ ≤ n+1∑

i=1

Li(x)
∥∥∥(ξ − µ)

(
fi(x)

)∥∥∥,
and so (H2) is valid. Next we can find m0 ∈ N such that

αm =
1

n!

n∑
i=0

Cnr (r +m)p+q < 1

for all m ≥ m0. Therefore
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ε∗m(x) :=

∞∑
s=0

Λsmεm(x)

=

∞∑
s=0

Λsm

(
θmq

n!
‖x‖p+q

)

=
θmq

n!

∞∑
s=0

(
1

n!

n∑
r=0

Cnr ‖(r +m)x‖p+q
)s

=
θmq

n!
‖x‖p+q

∞∑
s=0

(
1

n!

n∑
r=0

Cnr (r +m)p+q
)s

=
θmq

n!(1− αm)
‖x‖p+q

for all x ∈ X \ {0} and m ≥ m0.
Hence, according to Theorem 1, for each m ≥ m0 there exists a unique solution Fm : X \ {0} −→ Y
of the equation

Fm(x) =
1

n!

n∑
r=0

(−1)n−rCnr Fm
(

(r +m)x
)
, x ∈ X \ {0}

such that ∥∥∥f(x)− Fm(x)
∥∥∥ ≤ θmq‖x‖p+q

n!(1− αm)
, x ∈ X \ {0},m ≥ m0.

Moreover,
n∑
r=0

(−1)n−rCnr Fm(rx+ y) = n!Fm(x), x ∈ X \ {0}.

In this way we obtain a sequence {Fm}m≥m0 of monomial mappings on X \ {0} such that∥∥∥f(x)− Fm(x)
∥∥∥ ≤ θmq‖x‖p+q

n!(1− αm)
, x ∈ X \ {0},m ≥ m0.

It follows, with m −→∞, that f is a monomial mapping of degree n on X \ {0}.

3 Conclusion
This paper indeed presents a relationship between three various disciplines: the theory of Banach
spaces, the theory of stability of functional equations and the fixed point theory. We established
some hyperstability results concerning a monomial functional equation in Banach spaces by using
fixed point theorem which given by Brzḑek J. Chudziak J. and Páles Zs. [26].
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