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ABSTRACT
In this study, we aim to provide an efficient load prediction 
system projected for different local feeders to predict the 
Medium- and Long-term Load Forecasting. This model 
improves future requirements for expansions, equipment 
retailing or staff recruiting to the electric utility company. 
We aimed to improve ahead forecasting by using hybrid 
approach and optimizing the parameters of our models. We 
used Long Short-Term Memory (LSTM), Convolutional 
Neural Network (CNN), Multilayer perceptron (MLP) and 
hybrid methods. We used Root Mean Square Error (RMSE), 
Mean Absolute Percentage Error (MAPE), Mean Absolute 
Error (MAE) and squared error for comparison. To predict 
the 3 months ahead load forecasting, the lowermost pre-
diction error was acquired using LSTM MAPE (2.70). For 
6 months ahead forecasting prediction, MLP gives highest 
predictions with MAPE (2.36). Moreover, to predict the 
9 months ahead load forecasting, the highest prediction 
has been attained using LSTM in terms of MAPE (2.37). 
Likewise, ahead 1 years MAPE (2.25) was yielded using 
LSTM and ahead six years MAPE (2.49) was provided using 
MLP. The proposed methods attain stable and better per-
formance for prediction of load forecasting. The finding 
indicates that this model can be better instigated for future 
expansion requirements.
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Introduction

Maintaining the stable operation of Power systems and electricity dispatching 
instructions requires load forecasting (Singh and Dwivedi 2018). Volatility 
and uncertainty in electric loads are produced by external variables (Ertugrul 
2016)(ZHANG et al. 2018). Individual residential loads, in contrast to aggre-
gated loads, are less predictable due to the lack of load smoothing (Ranaweera, 
Hubele, and Karady 1996). Customers also participate in demand response on 
an ad hoc basis, complicating residential load forecasting (He et al. 2016b) 
(AMJADY and KEYNIA 2009). The electric load demands according to the 
needs of residential, industrial, special events, seasonal and government and 
private sectors requires powerful automated tools to accurately forecast ahead 
demands.

Machine learning is less effective when dealing with large amounts of data 
and recent studies show that researchers not considered long-term forecasting 
with these methods. Deep learning (. Szegedy et al. 2015)(L.-C. Chen et al. 
2018) appears to be a viable method for properly handling large amounts of 
data. Deep learning features a multi-layer nonlinear network topology that 
allows for complicated feature abstraction and nonlinear mapping (Qiu et al. 
2014). By supervised fine-tuning of the parameters and multilayer unsuper-
vised training, a deep belief network (DBN) may extract features (Zheng et al. 
2014). The mining of spatial correlations is possible with convolutional neural 
networks (CNNs) (S. Yang et al. 2015). Image recognition (Kollia and Kollias 
2018), renewable energy forecasting (Tian et al. 2018), and load forecasting 
(Khotanzad, Afkhami-Rohani, and Maratukulam 1998a) all use CNNs. In 
Shivarama Krishna and Sathish Kumar (2015), a combination of CNN and 
load range discretization was effectively employed in probabilistic load fore-
casting. Long short-term memory network (LSTM) is another exemplary deep 
learning model, which is a variation of the recurrent neural network (RNN) 
and can deal with time series implied long-term dependencies (Kong et al. 
2019). Several LSTM-based load forecasting algorithms have been proposed 
(Han et al. 2019)(Park, Yoon, and Hwang 2019)(LeCun, LeCun and Bengio 
1995)(Hochreiter, Schmidhuber, and J 1997). An LSTM-based load forecast-
ing strategy for a single user was employed in Oord et al. (2016), and a careful 
comparison with benchmark approaches indicated the method’s benefit. 
LSTM is chosen as the prediction model’s foundation because of the proposed 
temporal link in the load series. Despite this, LSTM treats all inputs the same, 
neglecting the reality that input vectors have varying roles in prediction at 
different time steps (He et al. 2016a).

Load forecasting is an approach that is implemented to foresee the future 
load demand projected on some physical parameters such as loading on lines, 
temperature, losses, pressure, and weather conditions, etc. Load forecasting is 
a course of action followed by electric corporations to foresee electrical 
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potential required to stabilize supply and load demands on the continuous 
basis. It is required for the established working of the industries that run 
electrically. Load forecasting within energy management network could be 
classified into four types as per distinctive length of forecasting intervals 
(Singh and Dwivedi 2018): (i) very short-term load forecasting (VSTLF) 
predicts load just for small time span; (ii) short term load forecasting 
(STLF); it forecasts load starting from 24 hours prolonging to 1 week; (iii) 
medium term load forecasting (MTLF), it forecasts load over few weeks to 
number of few months or till one year; and (iv) Long Term Load Forecast 
(LTLF) forecasts load up to several years. In this study, we emphasize on 
MTLF and LTLF which is fundamental for controlling, planning for power 
systems, evaluation of interchange, assessment of security, reliability analysis 
along with spot value estimation [2] (ZHANG et al. 2018) which prompts the 
higher precision necessity as opposed to long-term forecast.

Many new approaches have been employed for the objective of load fore-
casting such as fuzzy logic, Artificial Intelligence (AI), etc. Utilization of AI 
advancements to understand STLF is turning out to be widely applicable these 
days. Numerous applications worldwide are being benefited with newly cre-
ated AI based frameworks. Fuzzy logic has been employed to integrate load 
and weather data by (Ranaweera, Hubele, and Karady 1996). These fuzzy 
principles were acquired by the historical data with the utilization of 
a learning-type calculation (Ranaweera, Hubele, and Karady 1996). In Y. He 
et al. (2016) the authors presented an architecture for evaluating the vulner-
ability of load and obtaining further information about potential subsequent 
loads, after which a neural framework has been employed to remake the 
quantile regression archetype for developing probabilistic forecasting techni-
ques. In AMJADY and KEYNIA (2009), authors present a hybrid forecasting 
model for STLF based on wavelet transition and neural system, as well as an 
evolutionary algorithm. The authors of Ghofrani et al. (2015) presented 
a combination of Bayesian Neural Network (BNN) and Wavelet Transform 
(WT) to generate the load characteristics for BNN formulation in 
a comparative technique. This approach employed a weighted total of the 
BNN yields to anticipate the load for a particular day. An STLF model 
suggested by Fan, Peng, and Hong (2018) combines Phase Space 
Reproduction (PSR) calculations with the Bi-Square Kernel (BSK) regression 
model in one of the previous hybrid models. To boost the forecast’s unshak-
able efficiency, a phase space reconstruction technique might be utilized in this 
model to detect the developmental trends of historical load, as well as the 
inserted significant highlights data. The BSK architecture, on the other hand, 
connects the spatial assemblies between regression points and their neighbors 
to obtain rotatory rule guidance and alarming impact in each measurement. 
STLF (Fan, Peng, and Hong 2018) was able to successfully create and use the 
proposed model, which included multi-dimensional relapse. Mamlook et al. 
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used a fuzzy logic controller-based hourly system to estimate the impact of 
numerous restricted criteria, including the atmosphere, time, load historical 
summation of data, and random upsetting influences, as well as overload 
forecasting for fuzzy sets utilizing the age approach, in Mamlook, Badran, 
and Abdulhadi (2009). WT divided the time stream into segments in this 
study, then anticipated each segment using a neural network and an evolu-
tionary algorithm.

Deep convolutional neural networks are employed for a vast array of tasks, 
including medical image analysis (Litjens et al. 2017) and image classification 
(Glorot, Bordes, and Bengio 2011). Feature detector units are placed in layers 
in a deep learning architecture. Lower layers detect simple features, which are 
sent into higher layers, which detect more complex features. Convolution 
neural networks (CNNs) (LeCun, Bengio, and Hinton 2015) are a type of 
neural network. In comparison to standard feed forward neural networks, the 
structural elements (i.e., neurons) are significantly reduced. The deep learning 
convolutional neural network using transfer learning methods has been vali-
dated in earlier works (Shin et al. 2016; H. Chen et al. 2015; S. Gupta et al. 
2014; S., 2015; Shin, Lu, and R.m.s 2015) and is widely utilized in imaging 
databases (S. Gupta et al. 2014; S., 2015), neuroimaging (A. Gupta, Ayhan, and 
Maida 2013), MRI, CT (Computed Tomography), (H. Chen et al. 2015) and 
ultrasound images (Cao et al. 2018).

In another method, the research investigating about utilizing AI for STLF 
was given by Metaxiotis et al. (2003). Lately, Convolutional Neural Networks 
(CNNs) have shown better execution in forecasting. CNNs were presented by 
Fukushima in its straightforward structure (Fukushima and Miyake 1982). 
Afterward, authors of LeCun et al. (1999) introduced the current type of CNNs 
with further developed ideas. Since their inception, the CNNs have met 
numerous upgrades and augmentations, for example, max pooling sheets 
and layers along with bunch normalization presented by (Sermanet et al. 
2013). In spite of the fact that CNNs are fruitful for the forecasting 
(Abdulnabi et al. 2015; Levi and Hassncer 2015), one of the principle issues 
of utilizing them over other profound neural systems strategies is over-fitting 
(Xie et al. 2016). As Burnham characterized (Burnham and Anderson 2004) 
over-fitting is the creation of an examination that relates too intently or 
precisely to a specific data set and may in this manner neglect to fit added 
data or dependably foresee future perceptions. There are a few strategies to 
keep away from or lessen over-fitting in the scenario of deep learning designs 
profound learning models, for example, data augmentation methods, utilizing 
regulations entitles in the intended function as well as batch normalization 
(Goodfellow, Bengio, and C.A 2016). A few procedures are explicitly intended 
for CNN models, for example, incorporating a pooling layer in the design 
(Guo et al. 2016). In rundown, CNN is a decent approach for STLF applica-
tions, in so far as over-fitting could be controlled.
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STLF has been the vital zone of research utilizing statistical techniques 
along with Artificial Neural Network (ANN). Statistical methodologies incor-
porate the Autoregressive Integrated Moving Average (ARIMA) (Yuan, Liu, 
and Fang 2016), double-seasonal Holt Winters exponential smoothing (Taylor 
2003) along with PCA-based Linear Regression (Bair et al. 2006). Currently, 
ANN-derived methodologies have attained extensive consideration in electri-
cal load forecasting. There has been a change in model design in an ANN 
system that relies on both forecasting length and the information required to 
make the forecast. There are two types of successions: one is univariate and the 
other is multivariate. Models that use univariate datasets will be basic, small in 
size, and efficient trainers in general; nevertheless, they will have low precision. 
On the contrary, models dependent over multivariate datasets happen to be 
computationally slow in practice. In order to address such issues, first of all the 
preprocessing of a provided dataset modified to multi-bivariate successions to 
successfully get familiar with the characteristics, which could be extricated 
from the information taken out of individual context. A new hybrid model has 
been exploited to precisely forecast n-day depiction demand requirement. 
Particularly, the suggested hybrid network comprises of multi-Long Short- 
Term Memory (LSTM) layers as well as CNN layer. Analyzing multi-LSTM 
layers, from every input, there is a separation of features by each layer, 
contained a bi variate succession, and caters these characteristics to a CNN 
layer to attain an n-day profile. The recommended hybrid model is focused on 
wide forecasting concerns taking all short-term strata time associated granu-
larities (minutes, hours, days and so on). By proposing a bi variate-based 
setting learning strategy, the proposed hybrid model structure combines the 
productivity of multi-LSTM in distinguishing features out of multiple setting 
data with the capacity of CNN.

Many of the strategies used to forecast power requirements have incorpo-
rated Recurrent Neural Network (RNN) based LSTM, that utilized on Natural 
Language Processing (NLP) and time series data (Krizhevsky, Sutskever, and 
Hinton 2012; Sundermeyer, Ney, and Schluter 2015; Wen et al. 2015). 
Specifically, CNN have delivered highly extreme classification and identifica-
tion execution within the field Personal Computer (PC) vision and the recog-
nition of pattern (. Szegedy et al. 2015; L.-C. Chen et al. 2018; Krizhevsky, 
Sutskever, and Hinton 2012) and have additionally been exhibited to be 
powerful in different fields including TS data, for example, language informa-
tion, pattern data related to human behavior, power load data and so on (Qiu 
et al. 2014; Yang et al. 2015a; Zheng et al. 2014).

These days, hybrid energy framework has gotten progressively mainstream 
in the power industry. The major motive of the trend is growingly decrease of 
power stockpiling cost and the improvement of computerized interrelation, 
empowering real time observation and establishment of smart grid. In addi-
tion, hybrid energy framework is contemplating as probably the best 
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arrangement in handling irregularity happening by most sustainable power 
scheme plans comprising solar energy and wind power. For instance, in solar- 
based photovoltaic, power is possibly conveyed while getting adequate solar 
transmittance. As a result, a great extent of examination has been led so as to 
give the best plan of hybrid energy framework (Shivarama Krishna and Sathish 
Kumar 2015).

However, in view of the ongoing publications (Han et al. 2019; Kong et al. 
2019; Park, Yoon, and Hwang 2019; Tian et al. 2018), deep learning techniques 
exhibit the utmost efficient performance beside presentation by AI based 
solutions. The major reasons for the deep learning predominance come in 
the first place, deep learning doesn’t exceptionally depend on feature-based 
engineering and the hyper boundaries tuning is generally simpler contrasted 
with rest of the data-driven models. The other one is the accessibility of 
enormous datasets, the point at which the deep learning might correctly 
plan the contributions to the specific yield by building composite relations 
between the surfaces in the system on massively positioned data. Additionally, 
as the accessibility of GPU equal calculation and strategies giving loads sharing 
such as CNN (LeCun, LeCun and Bengio 1995), computational pace related to 
the deep learning architectures get significantly quicker.

In light of the prevalence in the field of deep learning, our work suggests 
a technique in load forecasting task, particularly MTLF, to foresee the hourly 
power utilization by utilizing deep learning calculations that is blend adapta-
tion of CNN, expanded causal surplus CNN along with LSTM (Hochreiter, 
Schmidhuber, and J 1997). Dilated causal remaining CNN is motivated 
through Wavenet design (Oord et al. 2016), that is renowned for generation 
of audio along with residual system (He et al. 2016b) with gate-activation 
work. This design will gain proficiency with the pattern dependent on long 
sequential input while Long Short-Term Memory layer functions as a model’s 
output self-revision that relates the result of Wavenet model with ongoing load 
demand tendency.

The principle commitment of this examination is that we suggest a new 
model using a blend of widened causal surplus CNN as well as LSTM using 
long and short successive information and fine drawn method. The extraction 
of the outer component or feature determination data is excluded from this 
examination. In addition, this exploration just considers time index data as an 
outside factor data, making it simple to be looked at as a standard architecture 
for future examination.

To enhance the versatility of our suggested model depiction, two different 
situations related to model testing are examined. The first situation is utilizing 
the testing dataset carrying indistinguishable appropriation with the approval 
information set, on the other hand the second is utilizing informational index 
having obscure dispersion. As a correlation, our suggested model outcomes 
are compared and the exhibition of the model from Kong et al. (2019) Tian 
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et al. (2018) along with the benchmarked wavelet (Oord et al. 2016). The 
simulation outcome shows that our model yielded better results than previous 
machine and neural network methods with less prediction error.

Recently, researchers utilized hybrid methods of CNN models for predic-
tion of time series problems. Xu et al. (Xu et al. 2022) employed particle swarm 
optimization (PSM) in LSTM to improve the ahead prediction of short-term 
flood forecast. The researchers (Stefenon et al. 2020) applied LSTM with 
Adaptive Neuro-Fuzzy Inference System (ANFIS) to predict fault in electrical 
power insulator. Moreover, Rodrigues Moreno et al. (2020) employed LST 
with multi-stage decomposition model to predict ahead multi-step wind speed 
forecasting. The researcher (Cho and Kim 2022) applied hybrid method i.e. 
weather Research and Forecasting hydrological modeling system (WRF- 
Hydro) with LSTM to improve streamflow prediction. The researchers (Cho 
and Kim 2022) applied efficient bootstrap stacking ensemble learning method 
to improve the wind power generation forecasting.

A schematic diagram of an electric load forecasting system for short- and 
medium-term demand forecasting is shown in Figure 1. The MTLF is used to 
schedule power systems for periods ranging from three months to six year. We 
calculated the MTLF for the next 3 months, 6 months, 9 months, 1 year and 

Figure 1. Schematic diagram of electric load forecasting system.
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6 years in this case. An optimal model based on Multilayer Perceptron (MLP), 
LSTM, CNN, and CNN + LSTM has been presented in this work. On the test 
collection, the output was calculated using standard performance error metrics 
including RMSE,MSE, MAE, MAPE and R-squared. Moreover, MTLF ahead 
load forecasting is computed and efficiency is assessed according to the error 
in expected and real load demands.

Smart Grids are developing, creating, and profiting by the advancement of 
data and correspondence advances and are progressively turning into an 
effective and powerful framework. In these environments, power conservation 
frameworks are fabricated to observe, accelerate, and dominate the vitality 
market. Demand Management contemplated an indispensable segment of the 
power management architectures; gives the way to settle on pertinent choices 
on the trading of electrical vitality between various elements of the electrical 
network of grids by guaranteeing the solidity along with steady quality of the 
proper functioning of the electrical infrastructures (Murthy Balijepalli et al. 
2011).

The currently prevailing power grids are showing a rapid growth, producing 
numerous apprehensions regarding environment, effective use and support-
ability along with energy autonomy. Load forecasting framework has the basic 
role for power demand supply organizations (Chan et al. 2012; Faria and Vale 
2011; Moslehi and Kumar 2010).

Precise and definitive forecasting strategies can add to:

● Supply-demand designing
● Strengthen the dependability of electric grid qualities by getting it trouble 

free for administrators to intent along with compelled planned conclu-
sions for vendors.

● Optimizing power load which is required on high occasions by guaran-
teeing that energy supplied by manufacturer is decreased.

● The amicable integration of sustainable resources assists with accomplish-
ing natural along with monetary targets.

● Save working and preservation costs by maintaining systematic frame-
work at a lesser price and decreasing system.

Time series data on load forecasts from January 1, 2017 to May 31, 2020 
(41 months), we computed next 3 months, 6 months, 9 months, 1 year and 
6 years ahead forecasting using the proposed methods. In the past few decades, 
due to the rapid surge in the wind production of electricity, the capacity of the

wind power has been increased almost four-fold from 4.3 GW to 203.5 GW. 
The power systems in their growth and complexity, several factors become 
influential to the electric power production and consumption. The electric 
utilities’ basic difficulty is to maximize the long-term and short-term operation 
system efficiency. Load forecasting has become a critical challenge for electric 
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utilities in order to promote economic development and fulfil power needs in 
the future. The development of a strategy for power supply, finance planning, 
electricity management, and market search can all benefit from an accurate 
load forecasting system (Bozchalui et al. 2012), (Khator and Leung 1997). The 
STLF is used in the power systems planning for unit commitment and 
dispatch, potential for cost-effective and safe power system service (1 hour- 
72 hours up to one week), while medium-term forecasting ranging from one 
days to one year is used to plan maintenance of the wind farms, outage of 
thermal generation, unit commitment, storage operation and to schedule grin 
maintenance of energy, it also coordinates the delivery of fuel and the repair of 
equipment. In power system planning, long-term load forecasting (more than 
a year ahead) is used (Khator and Leung 1997).

Rest of the paper is arranged as: Section 2 presents the materials and 
methods. Results are discussed in section 3 and discussion is made in section 
4. Conclusions are discussed in section 5. This work is related to the various 
case studies of the authors such as published in Mehmood Butt et al. (2021).

In this analysis, we used dataset of electric power consumption collected on 
hourly basis between 1st January 2017 to 31, May 2020 (41 months). We split 
the dataset into two sets: train and test with respect to testing period using 10- 
fold cross validation, i.e. for model 1 we used the data of last three months as 
a test data and previous data was consider as training data. Cross-validation 
method is used to train and test the data simultaneously for validation 
purposes. Similarly for model 2–4, we used last 6,9 and 12 months data as 
test set and previous data was considered as training data. Then we trained 
MLP, 1D-CNN, LSTM and CNN+LSTM with respect to train set. After that, 
we evaluated and compared the performance of each method with different 
error metrics on all test sets.

LSTM

We create an LSTM model with one LSTM layer of 64 neurons and ” RELU” as 
an activation function. After that we added four dense layers, where first three 
layers contains 32, 16 and 8 neurons respectively with “RELU” activation 
function. The final layer which also acts as the output layer contains 1 neuron. 
Finally, we compiled our model using optimizer = “ADAM” and train it for 
100 epochs with a batch size of 24.

Conv1D

For Conv1D we defined 64 filters and a kernel size of 2 with “RELU” as an 
activation function. In order to reduce the complexity of the output and 
prevent over fitting of the data, we used Max pooling layer after a CNN 
layer with size of 2. Moreover, four dense layers were added from which first 
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three layers contains 32, 16 and 8 neurons respectively with “ RELU“ activa-
tion function. The final output layer contains 1 neuron. Lastly, we used mean 
squared error loss function in this model was compiled with “ADAM” opti-
mizer and then fit for 100 epochs by, and a batch size of 24 samples is used.

MLP

With MLP, the first four dense layers of model consist of 64, 32, 16 and 8 
neuron and ”RELU” as an activation function. In addition, the final dense 
layers were added with 1 neuron for output. Lastly, the model was fit using the 
efficient ADAM optimization algorithm and the mean squared error loss 
function for 100 epochs with batch size of 24.

CNN± LSTM

For this hybrid approach, we defined 64 filters and a kernel size of 2 with 
“RELU” as an activation function. Following this we then add Max pooling 
layer, then output is flattened to feed into LSTM layers contains 64 neurons 
and ” RELU” as an activation function. After that we added four dense layers, 
where first three layers contains 32, 16 and 8 neurons respectively and final 
output layer, contains 1 neuron. At the end, we compiled our model using 
optimizer = “ADAM” and train it for 100 epochs with a batch size of 24.

Material and Methods

Dataset

In this analysis, we used dataset of electric power consumption collected on 
hourly basis between 1st January 2017 to 31, May 2020 (41 months) taken 
from Islamabad. We divided the dataset into two sets: train and test with 
respect to testing period, i.e. for model 1 we used the data of last three months 
as a test data and previous data was considered as training data. Similarly, for 
model 2–4, we used last 6, 9- and 12-months data as test set and previous data 
was considered as training data. Then we trained MLP, 1D-CNN, LSTM and 
CNN+LSTM with respect to train set. After that, we evaluated and compared 
the performance of each method with different error metrics on all test sets.

Methods

Deep learning technique is one of the components of machine learning that takes 
out from already made strategies for Machine Learning (ML) to Artificial Neural 
Network (ANN). Functioning of ANN resembles a human mind. In ANN, 
calculations are executed by neurons which play out some activity and forward 
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data to other neurons to perform further tasks. Layers are framed by gatherings 
of neurons, ordinarily counts of one layer are moved to the other layer. A few 
systems permit to take care of data inside layer neurons or past layers. Conclusive 
outcomes are yield of last layer which can be utilized for relapse and categoriza-
tions. Essentially deep learning removes data from the information [56] which 
aids in investigation and forecast capacity for the intricate issues.

In 2006, G. E. Hinton, Osindero, and Teh (2006) suggested voracious 
method called as Restricted Boltzmann Machines in which the prepared layers 
individually and abstains from disappearing gradient issue and opens entry-
way for more deeper systems. Deep learning improves characterization con-
sequences of PC vision (Günther et al. 2014) and speech acknowledgment (G. 
Hinton et al. 2012).

CNNs have numerous applications, for example, object detection, object 
location, face recognition, image fragmentation, depth assessment, video 
grouping as well as image inscribing [58], [59]–[64]. Using a convolutional 
neural system, the findings of a machine vision neural system showed signs of 
change. In 1998, (Al-Musaylh et al. 2018) suggested a proposal with a better 
structure than (Huo, Shi, and Chang 2016), and the current CNN’s engineer-
ing resembles the LeCun plan. By winning the ILSVRC2012 rivalry, CNN 
gains notoriety (Karpathy et al. 2014).

Multilayer Perceptron (MLP)
Paul Werbos developed the MLP in 1974, which generalizes simple percep-

tion in the non-linear approach by using the logistics function 

F xð Þ ¼ tangh xð Þ (1) 

MLP comprises three layers. The gradient backpropagation method is utilized 
to find optimal weight structure by adjusting the weights of neural connec-
tions. The network converges to a low generalized error state (El khantach, 
Hamlich, and Eddine Belbounaguia 2019).

Figure 2 shows the general architecture and working of the MLP algorithm. 
It contains input time series of different normalized loads demands as actual 
time series, activation functions, hidden neurons and, learning. The finally 
error metrics are computed to predicted the difference between actual and 
predicted load demands.

Long Short – Term Memory (LSTM)
The architecture of LSTM model is reflected in Figure 3. LSTM is an 

artificial recurrent neural network (RNN) architecture used in the field of 
deep learning (Hochreiter, Schmidhuber, and J 1997). LSTM is more robust 
and appropriate for both short and long term data dependencies. The LSTM 
was designed to resolve the issues appeared in RNN architecture by adding 
forget gate, and output gate which manage the vanishing gradient problems 
very efficiently (Zheng, Yuan, and Chen 2017).
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Memory cell of LSTM is considered as its major innovation. To get rid of 
unnecessary information, the forget gate is used. After that, a sigmoid opera-
tion is applied to measure the accelerate the forget state ft:

ft ¼ σ Wf : ht� 1; xt½ � þ bf
� �

(2) 

The second step is used to know which new data is required to get saved 
within the cell condition. Another sigmoid layer, known as the “input gate 
layer,” is used to get the updated information. Then, a ft ¼

σ Wf : ht� 1; xt½ � þ bf
� �

function is used to create a vector ct of novel values 
that ought to be updated embarked on upcoming state. 

it ¼ σ Wi: ht� 1; xt½ � þ bið Þ (3) 

Figure 2. Multilayer perceptron (MLP) architecture.

Figure 3. Architecture of LSTM model.
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~ct ¼ tanh Wc: ht� 1; xt½ � þ bcð Þ (4) 

In the second step, the old cell state ct� 1 is refurbished to new cell state ct: To 
delete the information from the old cell we can multiply ct� 1 by ft. Then add 
it � c

t
: The new candidate values for updating represented by 

ct ¼ ft � ct� 1 þ it � ~ct (5) 

In the last step, the output is needed to be decided. The step consists of 
a couple of further steps: the sigmoid function is used as an output barrier to 
strain the cell state. Further, the obtained cell state is passed across tanh �ð Þ; the 
obtained output ot is multiplied for the calculation of desired information. 

ot ¼ σ Wo: ht� 1; xt½ � þ boð Þ (6) 

ht ¼ ot � tanh ctð Þ (7) 

We optimized the hyperparameters of LSTM such as Decay rate 0.98, learning 
rate 0.004, momentum 0.8, batch size 128 to improve the outcomes.

Convolutional Neural Network (CNN)

CNN is also a class of artificial neural networks (ANNs) widely used in many 
applications such as signal and image processing, computer vision, electricity 
load forecasting etc. CNN adaptively and automatically learn through back-
propagation by utilizing multiple building blocks such as pooling layers, 
convolution layers, and fully connected layers. CNN is successfully been 
used in many applications of prediction, recognition, forecasting and objec-
tion tracking ranging from healthcare, education, environment, energy, and 
diverse field of science such as recognition of face (Taigman et al. 2014), object 
detection & image fragmentation (Shelhamer, Long, and Darrell 2017), video 
grouping, in-depth assessment as well as image inscribing (Karpathy et al. 
2014) classification, day-ahead building-level load forecasts (Cai, 
Pipattanasomporn, and Rahman 2019), natural language processing (Young 
et al. 2018), and anomaly detection (Canizo et al. 2019), time series stream 
forecasting (Zeng, Xiao, and Zhang 2016).

Figure 4 indicates the architecture of the CNN model. A 1D load forecasting 
time series were used as input to the CNN model, it was processed in different 
layers of CNN models and finally, the output was in terms of error between 
actual load demand and predicted values.
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Performance Evaluation Measures

The quality of predictor was examined by quantitatively measuring the accu-
racy in term of root mean squared error (RMSE), coefficient of determination 
(R2), mean square error (MSE) and mean absolute error (MAE), mean 
absolute percentage error (MAPE). The following renowned error prediction 
metrics detailed in (Hussain et al. 2019) are used:

(1) Root mean squared error (RMSE)

To examine the quality of a predictor, we need a metrics to quantitatively 
measure its accuracy. In the current study, a quantity called RMSE was 
introduced for such a purpose, as defined by: 

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

i¼1
xi � yið Þ

2

s

(8) 

Where xi and yi denote the measured and predicted values of the i-th 
sample, and ‘n’ denote the total number of samples of the training dataset. 
The smaller value of RMSE denote the better set of selected descriptors.

(1) Coefficient of determination (R2)

R2 can be computed using the following function: 

R2 ¼

Pn
i¼1 xi � yið Þ

2

Pn
i¼1 xi � �yð Þ

2 (9) 

Figure 4. CNN architecture for load forecasting.
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Here �y denote the average values of all the samples.

(1) Mean Square error (MSE)

MSE can be mathematically computed as follow 

MSE ¼
1
n

Xn

i¼1
xi � yið Þ

2 (10) 

The MSE of an estimator measures the average of the squares of errors or 
deviations. MSE also denote the second moment of error that incorporate both 
variance and bias of an estimator.

(1) Mean Absolute error (MAE)

MAE is the measure of difference between two consecutive variables, for 
example variable y and x denote the predicted and observed values, then MAE 
can be calculated as: 

MAE ¼
Xn

i¼1

yi � xið Þ

n
(11) 

Results

It is calculated as the difference between the real and expected values. If the 
difference between observed and expected values is small and statistically 
unbiased, the model best matches the data. The residual plots are frequently 
used to test the goodness of fitness because they can more easily disclose 
undesirable residual arrangements that show biased results than numbers. 
R-squared is an arithmetic metric that demonstrates how well data fits 
together. Coefficient of determination is another name for it.

Table 1 depicts the load predictions for next 3 months. The LSTM algorithm 
yielded the highest predictions to forecast ahead 3-month forecasting followed 
by MLP, CNN + LSTM and CNN by computing the RMSE,R2, MSE, MAE and 
MAPE error metrics.

Table 1. Prediction of the next 3 months ahead load forecasting.
Method R2 MAPE MAE MSE RMSE

MLP 0.9803 2.72 327.19 206598.09 454.53
LSTM 0.9808 2.70 325.34 201646.51 449.05
CNN 0.9483 4.76 558.77 543904.56 737.50
CNN+LSTM 0.9673 3.47 416.44 344598.33 587.02
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Table 2 depicts the load predictions for next 6 months. To predict the ahead 
6 months load forecasting, the MLP followed by LSTM, CNN + LSTM and 
CNN yielded ahead forecasting performance.

Table 3 depicts the load predictions for next 9 months. LSTM obtained 
highest prediction when forecasting 9 months ahead followed by MLP, CNN + 
LSTM and CNN as reflected in the Table

Table 4 shows the predicted load forecasting for the next year. As 
shown in Table 4, the best 1-year prediction output was obtained using 
LSTM, followed by MLP, CNN + LSTM, and CNN. Figure 5(a) depicts 
the results of three-month load forecasts produced using four different 
methods (MLP, LSTM, CNN, and CNN + LSTM). The LSTM is the 
nearest to the real load curve among the extracted curves, followed by 
MLP and CNN + LSTM and CNN. As shown in Table 1, the correspond-
ing error values were calculated.

Figure 5 (b) depicts the effects of six-month load forecasting using four 
separate approaches (MLP, LSTM, CNN, and CNN + LSTM). The MLP is the 
nearest to the real load curve among the extracted curves, followed by LSTM, 
CNN + LSTM, and CNN. As shown in Table 2, the corresponding error values 
were obtained. Figure 2 (c) depicts the effects of nine-month load forecasts 
using four separate approaches (MLP, LSTM, CNN, and CNN + LSTM). The 
LSTM is the nearest to the real load curve among the extracted curves, 
followed by MLP, CNN + LSTM, and CNN. As shown in Table 3, the 
corresponding error values were obtained. Figure 5 (d) depicts the effects of 
one-year load forecasting using four distinct approaches (MLP, LSTM, CNN, 

Table 2. Prediction of the next 6 months ahead load forecasting.
Method R2 MAPE MAE MSE RMSE

MLP 0.9820 2.36 265.45 140694.59 375.092
LSTM 0.9798 2.58 290.92 158067.24 397.576
N 0.9567 3.83 427.30 338919.63 582.168
CNN+LSTM 0.9720 2.97 330.80 219362.20 468.36

Table 3. Prediction of the next 9 months ahead load forecasting.
Method R2 MAPE MAE MSE RMSE

MLP 0.9879 2.38 282.465 146275.23 382.46
LSTM 0.9877 2.37 283.306 148371.15 385.20
CNN 0.9670 3.91 469.927 399613.59 632.15
CNN+LSTM 0.9812 2.87 348.86 227305.65 476.76

Table 4. Prediction of the next 1 year ahead load forecasting.
Method R2 MAPE MAE MSE RMSE

MLP 0.9901 2.30 313.63 179418.40 423.58
LSTM 0.9905 2.25 304.34 172385.71 415.19
CNN 0.9732 3.81 512.08 485420.82 696.72
CNN+LSTM 0.9850 2.75 372.47 271644.37 521.19
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Figure 5. Ahead forecasting using MLP, LSTM, CNN, CNN + LSTM to forecast a) Three months, b) Six 
months c) Nine months and d) 1 year, e) six years.
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and CNN + LSTM). The LSTM is the nearest to the real load curve among the 
extracted curves, followed by MLP, CNN + LSTM, and CNN. As shown in 
Table 4, the corresponding error values were obtained.

The Table and Figure 5 (2) reflect the adhead six years load forecasting. The 
MLP yielded the highest ahead six years forecasting with R2 (0.9815), MAPE. 
(2.49), MAE (311.64), RMSE (471.54) followed by LSTM with R2 (0.9619), 
MAPE (3.03), MAE (416.75), RMSE (677.34); CNN + LSTM with R2 (0.9533), 
MAPE (3.51), MAE (471.05), RMSE (749.62); and CNN with R2 (0.9283), 
MAPE (5.42), MAE (673.84), RMSE (928.96).

In the Tables 1–5 and Figure 5, we utilized the machine learning and deep 
learning models with single and hybrid approach. We aimed to improve the 
ahead prediction of medium and long-term forecasting from 3 months to six 
years by optimizing and utilizing hybrid approach. We computed the perfor-
mance in terms of R-squared error, MAE, MAPE, RMSE, MSE. The minimum 
difference between actual and predicted model shows the better prediction. 
Our proposed models with hybrid and parameter optimization approach 
yielded the improved medium and long-term forecasting.

Discussions

In this study we predicted the short- and medium-term load forecasting by 
employing and optimizing the deep learning models. We computed ahead 3, 6, 
9 and 12 months forecasting by implemented CNN, LSTM, MLP and CNN + 
LSTM. The prediction performance was computed with standard performance 
evaluation metrics. In the literature, The Table 5 reflects the ahead forecasting 

Table 5. Prediction of ahead six year load forecasting.
Method R2 MAPE MAE MSE RMSE

MLP 0.9815 2.49 311.64 222351.94 471.54
LSTM 0.9619 3.03 416.75 458797.66 677.34
CNN 0.9283 5.42 673.84 862976.07 928.96
CNN+LSTM 0.9533 3.51 471.05 561931.59 749.62

Table 6. Comparison with other studies for 3 months load forecasting.
Method RMSE MAPE (%) MAE

SVR (Ceperic, Ceperic, and Baric 2013) 1155.91 5.65 979.10
DT (L. Yang and Yang 2019) 701.78 3.02 553.725
ARIMA (Al-Musaylh et al. 2018) 818.07 3.43 628.24
RF (Huo, Shi, and Chang 2016) 943.62 3.48 647.44
BP (L. Yang and Yang 2019) 715.68 2.85 527.99
RNN (L. Yang and Yang 2019) 762.60 2.91 537.40
gate-RNN (L. Yang and Yang 2019) 792.15 3.23 601.51

This approach
MLP 454.53 2.72 327.19
LSTM 449.05 2.70 325.34
CNN 737.50 4.76 558.77
CNN+LSTM 587.02 3.47 416.44
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performance with other machine learning and RNN methods for ahead 
3 months prediction. From the results, with previous methods applied such 
as decision tree (DT), Support Vector Regression (SVR), Auto Regressive 
Integrated Moving Average (ARIMA), Random Forest (RF), Back 
Propagation (BP), Recurrent Neural Network (RNN) and date RNN. The 
highest prediction performance in terms of MAPE was acquired using BP 
with MAPE (2.85), followed by RNN, DT, gate-RNN, ARIMA, RF and SRV 
and other performance metrics such as RMSE and MAE accordingly.

In this study, ahead 3 months prediction, we obtained the highest predic-
tion using LSTM with MAPE (2.70) followed by MLP, CNN + LSTM and 
CNN along with other performance metrics such as RMSE and MAE accord-
ingly as reflected in the Table 5 below.

The results yielded using our approach show that LSTM gives better ahead 
prediction results to predict ahead 3, 6, 9 and 12-month forecasting.

The Comparison with other studies for 3 months load forecasting is 
depicted in Table 6. The studies related to hybrid network for the power 
demand prediction have also been described in Kollia and Kollias (2018) 
and Tian et al. (2018). In Kollia and Kollias (2018), there has been 
a transformation of a data set toward the 2-D images by the authors and 
hence utilized these images functioning as inputs for a CNN-RNN structure. 
The precision of this CNN-RNN found to be 10% and 26% excessive than 
ANN and LSTM (Khotanzad, Afkhami-Rohani, and Maratukulam 1998b), 
individually. Another work depicting about CNN-LSTM constructed hybrid 
framework has been presented in Tian et al. (2018). According to the study, 
LSTM as well as CNN work organized horizontally with the characteristics 
related to input data separately drawn out. Right after the feature extraction by 
LSTM and CNN, the yields of these two networks have been changed in the 
consolidated layer from the featured fusion layer.

An outfit deep learning strategy utilizing many deep learning systems was 
depicted in (Qiu et al. 2014). Because the yield may fluctuate when the epoch 
count is altered, output esteems and for each Deep Belief Network (DBN), 
values were acquired by using different epochs over a few DBNs in the study. 
The authors built a deep learning system using the result of a Support Vector 
Regression (SVR) as input, and it performed 4% and 15% better in estimating 
power requirements than SVR and DBN, respectively. TS data was prepared 
using a multi-channel Deep Convolutional Neural Network (DCNN) model in 
Zheng et al. (2014) and S. Yang et al. (2015), which takes characteristics from 
a single univariate time series in each channel and aggregates data from 
complete channels to create an element depiction at the terminal layer. This 
technique was additionally applied in analyzing pattern data of human beha-
vior along with ECG data.

APPLIED ARTIFICIAL INTELLIGENCE e2088452-2083



Conclusion

Since it is used in power grid decision-making and operations, accurate 
electric load forecasting is important. Accurate electric load forecasting will 
assist operators in developing an effective business strategy to maximize 
energy management’s economic benefits. Thus, it is pertinent to develop 
such load forecasting models which could provide stable, robust and accurate 
load forecasting. We used a dataset of electric power consumption collected on 
an hourly basis for this study. We used deep learning models such as LSTM, 
MLP, CNN + LSTM, and 1D-CNN to forecast the dataset for 3, 6, 9 months, 1 
and 6 years ahead. The prediction performance was evaluated in terms of 
different standard error metrics. Overall, LSTM generated the best ahead load 
forecasting results, followed by MLP, CNN + LSMT, and CNN. The findings 
show that the current solution could be more appropriate for potential power 
expansion issues. As a result, the proposed model is found to outperform 
benchmark models in terms of forecast results.
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